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EPA's SHEDS-Dietary model is a probabilistic, p@piin-based dietary exposure assessment
model that simulates individual exposures to chafsim food and drinking water over different
time periods (e.g., daily, yearly). SHEDS-Dietagyne module (along with the separate
SHEDS-Residential module) of EPA’s more comprehankuman exposure model, the
Stochastic Human Exposure and Dose Simulation nfodehultimedia, multipathway

chemicals (SHEDS-Multimedia), which can simulatgragate or cumulative exposures over
time via multiple routes of exposure (dietary & raietary) for different types of chemicals and
scenarios. SHEDS-Residential and SHEDS-Dietarybelmerged together in a future version of
SHEDS-Multimedia.

SHEDS-Dietary version 1 includes case study exasnpleillustrative purposes, as described in
the the Technical Manual and User Guide. All ingaities used in the SHEDS-Dietary model
for a given application should be entered or reei@\wy the researcher so that the model results
are based on appropriate data sources for the giwelication.

The United States Environmental Protection Ageheogugh its Office of Research and
Development developed and funded the SHEDS-Dietergel with assistance from contractor
Alion Science and Technology. SHEDS-Dietary Versionill undergo external peer review by
EPA's Scientific Advisory Panel July, 2010, andwdtdoe considered draft at this time.

We gratefully acknowledge our colleagues AndrewGdller in EPA’s Office of Research and
Development, and David J. Miller and members oftli® Dietary Exposure Science Advisory
Committee (DE SAC) in EPA’s Office of Pesticide grams, for providing technical input and
review of the SHEDS-Dietary model and technical ozn
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The EPA’s Office of Pesticide Programs (OPP) ipoesible for registering all uses of
pesticideslfttp://www.epa.gov/pesticides/requlating/laws.htrifhe Agency must ensure that a
pesticide, when used according to label directioas,be used with a reasonable certainty of no
harm to human health and without posing unreasernals to the environment. The Agency
also sets tolerances (maximum pesticide residwgdefor the amount of the pesticide that can
legally remain in or on foods when a pesticide mp@yised on food or feed crops. Under the
Food Quality and Protection Act of 1996 (FQPA) e'tierm ‘safe’, with respect to a tolerance for
a pesticide chemical residue, means that the Adtnator has determined that there is a
reasonable certainty that no harm will result fraggregate exposure to the pesticide chemical
residue, including all anticipated dietary exposuard all other exposures for which there is
reliable information.” FQPA specifies ‘all anticifed dietary exposures’ as the potential for
concurrent exposures from ‘all other tolerancesfiact for the pesticide’, and ‘all other
exposures’ as the potential for concurrent expasineen ‘non-occupational uses’, such as lawn
care and other residential uses of pesticides.

Since the passage of FQPA, the Agency has condtiuteel types of dietary risk assessments:
acute (1-day), chronic, and cancer. Chronic amter risk assessments have been based
traditionally on deterministic calculations at iher capita level, using DEEM-FCID to

calculate exposure by combining food consumptiahrasidue data (US EPA, FIFRA SAP
1997, 1998). For higher tier, refined acute dietaak assessments, OPP has generally used
DEEM-FCID (U.S. EPA 2000a) with Monte Carlo simudais to obtain an estimate of total
daily dietary exposure to a pesticide. To condagesal cumulative risk assessments (OP CRA,
NMC CRA, Triazine CRA), OPP has used longitudirgdr@gate exposure models (e.g.,
Calendex-FCID, CARES, Lifeline), peer-reviewed bfDs FIFRA SAP (U.S. EPA 1999,
2000b, 2000c, 2000d).

EPA'’s Office of Research and Development (ORD),idfetl Exposure Research Laboratory
(NERL) has developed the Stochastic Human ExpasuleDose (SHEDS)-Dietary model
version 1 (v1), a probabilistic, population-basegtaty exposure assessment model that
simulates individual exposures to chemicals in fand drinking water over different time
periods (e.g., daily, yearly) (Xue et al., 2018HEDS-Dietary is a module, along with SHEDS-
Residential, of ORD/NERL’s more comprehensive humgoosure model, SHEDS-Multimedia
(Zartarian et al., 2008; http://www.epa.gov/heasmtipcts/sheds_multimedia/sheds_mm.html
http://www.epa.gov/scipoly/SAP/meetings/2007/08140%.htn).

The Stochastic Human Exposure and Dose Simulatmoheifor multimedia,
multiroute/pathway chemicals (SHEDS-Multimediap&ing developed as a state-of-science
computer model for improving estimates of aggregsitegle-chemical, multi-route/pathway)
and cumulative (multi-chemical, multi-route/pathywayman exposure and dose. SHEDS-



Multimedia is the EPA/ORD'’s principal model for silating human exposures to a variety of
multimedia, multipathway environmental chemicalstsas pesticides, metals, and persistent
bioaccumulative toxins.

SHEDS-Multimedia version 4 is comprised of both dmretary module, SHEDS-Dietary version

1 (Xue, 2010) described in this technical manudl @tated user guide (Isaacs et al., 2010a), and
a residential module, SHEDS-Residential version de@cribed in a separate technical manual
and user guide (Glen et al., 2010, Isaacs et@l0QR). SHEDS-Residential is a physically-based,
probabilistic model that predicts, for user-spedfpopulation cohorts, exposures incurred in the
residential environment over time via inhaling @mninated air, touching contaminated surface
residues, and ingesting residues from hand- orcoli@-mouth activities. To do this, it

combines information on chemical usage, humaniactiata (e.g., from time/activity diary
surveys, videography studies), environmental residand concentrations, and exposure factors
to generate time series of exposure for simulatdviduals. One-stage or two-stage Monte
Carlo simulation is used to produce distributiohs)xposure for various population cohorts (e.g.,
age/gender groups) that reflect the variability/andncertainty in the input parameters.

A methodology for linking the residential and digtanodules for simulated individuals (based
on age, gender, body weight, total caloric intakeM3, race, season, weekday and region) will
be peer reviewed by EPA’s July 20-22, 2010 FIFRA&dic Advisory Panel. This
methodology, described later in this manual ingéetion entitled, “Algorithm for Matching
(Behavioral) Diaries: Food Consumption and Acti#gtterns.” has been tested through “soft
linking” the two modules with a permethrin pesteichse study. In the next version of SHEDS-
Multimedia, the dietary and residential module S28es will be merged, so that both types of
exposure can be calculated for the same individitai food consumption and activity pattern
diaries are appropriately matched. A common Giaghiser Interface (GUI) will also allow the
user to run either module separately, or to rumtheth together. The focus of this Technical
Manual is the standalone SHEDS-Dietary model.

The SHEDS-Multimedia model, including the SHEDS4Brg and SHEDS-Residential modules,
represent an advancement in science over existatgl®, given some of the key features
described below. SHEDS-Dietary allows conductiddigonal analyses for pesticides;
guantifying uncertainty in acute dietary risk assesnts; and enhancing chronic and cumulative
risk assessments. This model can be applied to otieenicals as well as pesticides, and
therefore may be useful to other Program OfficasAgencies.

This Technical Manual describes the algorithms hogblogies, data sources, and input and
output options and capabilities of the SHEDS-Dietandel vl. ORD, in conjunction with OPP,
developed this Agency state-of-the-science modptababilistically estimate dietary exposures
to inform regulatory risk assessments as well dsemd science questions for research purposes.
ORD’s SHEDS-Dietary modeling research focused drarning the science of probabilistic
dietary exposure assessments. OPP collaborati®H&DS-Dietary model development has
considered criteria for regulatory use: peer-nee@ / transparent (algorithms); publicly

available (free or nominal cost); and consisterth\&PA/OPP policies and guidelines.



One major purpose of the July, 2010 FIFRA SAP megds to review SHEDS-Dietary version 1
and SHEDS-Residential (cumulative or aggregategiorrd modules, and methodology for
linking them in the next version of SHEDS-Multimadso they can be used for regulatory
decision-making in EPA. Peer review of SHEDS-Mukaira, including its modules,
methodologies, and case studies, is necessarydad begulatory applications in EPA and
potentially other Agencies. In 2007 the EPA FIFRAPSreviewed the residential module of the
SHEDS-Multimedia model (version 3), and provideérmeonsult of the conceptual dietary
module (http://www.epa.gov/scipoly/SAP/meetings/2081407_mtg.htm).

SHEDS-Dietary is a publicly available, transpan@atdel that uses the SAS platform (requires a
SAS license for version 9.1 and higher); see sjeoifimputer requirements in the User Guide,
Isaacs et al., 2010a), which provides model addjtyadnd the ability to view, query, analyze,
and update the underlying databases (e.g., foosliomption, recipes, residues). It also facilitates
food consumption data (NHANES) and recipe updated,development of alternate exposure
modeling assumptions (e.g., stochastic assumphaesidues, by eating occasion or day). SAS
Output Tables provide flexibility to develop altata contribution analyses, and facilitate linkage
with PBPK models. This flexibility contributes tarious features of SHEDS-Dietary to allow
for exposure analyses in addition to standard dietgposure model results (i.e., exposure at the
95th , 99th, and 99"ercentiles of the population).

The SHEDS-Dietary model is consistent with EPA/Qiekcies and guidelines in that it
addresses FQPA requirements for acute and longauidggregate and cumulative exposure
assessments to pesticides residues in food, dgnkater, and water used in food preparation
while fulfilling the criteria described above faggulatory-use models.

The following sections of this manual describetd#ehnical details of the SHEDS-Dietary model
vl.

SHEDS-Dietary can produce population percentiledietiary exposure by source and age-gender
group; quantify contribution to total exposure bpd, commodity, and chemical; and be used for
eating occasion, sensitivity, and uncertainty asesdy In general terms, it combines information
about food and drinking water consumption datsetarh reported eating occasion with
corresponding chemical residue/concentration aaéstimate human dietary exposures. The
model can use either USDA’s Continuing Survey abd-tntake by Individuals (CSFIl) (1994-

96, 1998) or the NHANES/WWEIA (What We Eat in Anga) dietary consumption data (1999-
2006), along with EPA/USDA recipe translation filg<1D; Food Commodity Intake Database),
and available food and water concentration dafgecifics about combining this information
require a number of technical considerations, sisctianslating foods reported as eaten into raw
agricultural commodities using recipe files, samglresidues within a day and over time,
considering non-detects, and allocating total dngkvater consumption into within-day

drinking water events. The goals of the SHEDS-@netnodel are to use state-of-the-science
algorithms, to enhance the science of probabildigtary exposure assessments by allowing



additional analyses, and to better characterizeqaadtify uncertainty in Agency risk

assessments.

Some of the key features of SHEDS-Dietary are piteskein Table 1-1 and described below:

DS-Dietary Option/Feature

Available in
SHEDS-Dietary?

Notes [Option linked to 2007 FIFRA SAP
Question]

Food Consumption Data Sources

CSFII (1994-96, 1998 Children

Data used in Agency risk assessments (e.g., DEEM-

supplemental) Yes FCID™)
NHANES (1999-2006),
Preliminary data Yes Food recipes not availablenfor foods

Modeling

Longitudinal Consumption (Food, Water) Paterns

Within Day Direct DW
Consumption: 6 Equal Amount
Fixed Times (6 am, 9, 12, 3, 6,

9

pm) Yes R3 FIFRA SAP 2007
Within Day Consumption of
Direct DW: Bayer DW
Consumption Survey Yes QB FIFRA SAP 2007
Similar to Method used in Agency risk assessmants,(
2-Diary Yes Calendex-FCIDY)
[Q2 & Q5 FIFRA SAP 2007 option available but not
recommended; will be dropped in next update sirate d
8-Diary Yes not included in NHANES]
Diary Assembly (DA) Yes Currently based on Totald@Zic Intake

Residues (Food

& Drinking Water)

Method used in OPP risk assessments (e.g., DEEM-

Commodity (FCID) Residues Yes FCID™)
Option used to assess Arsenic (Journal articledeGaudy|
assigns residues to FCID commaodities; Difficult to

Food Residue (vs. Commaodity No Incorporate in GUI

Drinking Water Concentrations Yes Single Distribas only (e.g., DEEM-FCIB")
Randomly Select Year, then apply to corresponding
Modeled Day (e.g., Calendex-FCband CARES" use

Drinking Water Concentrations of 30 years of PRZM-EXAMS predicted DW

— Calendar Year No concentrations)

Modeling Food Residues

Select Single Residue for all
Eating Occasions, by

Method used in Agency risk assessments (e.g., DEEM

Commodity (RAC-FF) Yes FCID™)

Select New Residue for differe

Eating Occasions, by Food- [Q1 FIFRA SAP 2007 32; Option often has little effect
RAC-FF Yes for food-only analyses; may ‘add’ uncertainty]
Correlation across commodities,

across multiple chemicals

(products) applied to foods, an No Minimal datéamplement; (FIFRA SAP 2007, p.25)




DS-Dietary Option/Feature

Available in
SHEDS-Dietary?

Notes [Option linked to 2007 FIFRA SAP
Question]

over subsequent days

Multiple Distributions for

Commaodity (RAC-FF) No E.g., probability of ‘Doméstor ‘Import’;

Multiple Distributions for

Commodity (RAC-FF), By [Q5 FIFRA SAP 2007 E.g., linking food consumption
Season No with seasonal (and/or regional) residues

M

odeling Drinking Water Concentrations

Randomly select new DW

Method used in Agency risk assessments (e.g., DEEM

concentration each day Yes FCID™)

Randomly select Year for each

Person-iteration, then apply Retain seasonal patterns (autocorrelation) in DW
Predicted DW based on concentrations. Method used in Agency risk assestsn
Calendar (365) date No (e.g., Calendex-FCIBY, CARES™)

Sensitivity/Uncertainty Analyses

Sensitivity Analyses

*

Requires supplemental routine (e.g., effect of
consumption outliers on infant DW exposures — aldic
memo)

Uncertainty Analyses

*

Q4 FIFRA SAP 2007 Requires supplemental routine

Compiling/Viewin

Summary Statistics

5€S

Total Daily Exposures (999 Yes Measure used in OPP assessments

Average Daily Exposures

(99.9" * Need supplemental routine

Eating Occasions (99" based

on Maximum Exposure over all

Eating Occasions Yes Method used to characterigesexes (NMC CRA)
Method used in DEEM-Based Eating Occasions angly

Eating Occasions with Need supplemental routine. Supplemental program to

Chemical-Specific Half-Life calculate per capita 99'dor single-chemical, single-day|

(99.9" * was recently incorporated into GUI; needs QC.

Plotting Person-Day Exposures Yes Visualize Exppfatterns/Persisting Dose

Contribution Analyses: Shares

of Total Exposure, by

Commaodity Yes Used to develop risk mitigation optio

Contribution Analyses: Shares

of Total Consumption, by Food

(Commodity) Yes

Output Summary Results (99,9
CEC, etc.) to File (MS
Excel/MS Word)

SAS Editor/Wizard allow users txpert results

View/Query Data (Food Diaries
Recipes, etc.)

SAS Editor allows users to viewfyudata

New Aggregate Contribution

*

Analyses

Need supplemental routine

* not implemented in GUI but can be conducted uSAg code



In addition to providing estimates of total dailgidry exposure, SHEDS-Dietary provides the
Agency with a capability to conduct ‘Eating Occass’ analyses to refine risks for pesticides
and other chemicals; such analyses have been gestby several Panels (US EPA FIFRA SAP
1999, 2003, 2005). Research suggests that eatocagion analyses may refine the risk
assessments for some compounds with short hal-(WeS. EPA. 2007; Nako et al., 2007). Use
of the Bayer Drinking Water Consumption Survey (DBj@ata in SHEDS-Dietary (and in the
future, time of drinking water consumption datanfirdlHANES) can be used to refine previous
drinking water exposure analyses (e.g., reviseCBR, NMC CRA,;
http://www.epa.gov/pesticides/cumulative/). Egtand drinking occasion algorithms in
SHEDS-Dietary enhance the ability to model dieatgosures over short-term durations.
Detailed information by eating occasion also all@eaducting analyses to determine the
contribution to exposure of different food typelsemicals, and other factors for different age-
gender groups.

SHEDS-Dietary v1 includes longitudinal algorithraseinhance the ability to model dietary
exposures over short-term durations - less thayaahd up to one year, and to assess the impact
of a chemical’s half-life on the exposure resuitg)(, “persisting effects” for organophosphates).
For example, the SHEDS-Dietary longitudinal anadysan be used to assess exposure bio-
indicators persisting across multiple exposure &svgng., on cholinesterase inhibition for
organophosphates). By including recovery halfdiMeaction of the peak effect persisting from
one exposure event is considered when a second@goevent occurs later.

" $
SHEDS-Dietary can use the USDA’s CSFIl 1994-96,8186the NHANES/WWEIA 1999-2006
food consumption data. The 1994-1996, 1998 CS4tH Base included 5,845 food items
consumed by respondents. The NHANES respondemsteel consuming many of those same
foods, as well as approximately 580 new foodsweae not reported during the CSFII survey.
As part of the transition to using the newer NHAN#Sa, the Office of Pesticide Programs is
currently planning to update the food recipe daise(FCID) to include new foods that were not
reported by respondents in the CSFIl survey. Agppnately 20g (or approximately 1% of all
food eaten by individuals) of new NHANES foods ao¢ matched to CSFIl foods (see
Appendix F); however, our analyses have showndbées not affect results. Using this Agency
model provides OPP a quick and economical meaasdess the National Health and Nutrition
Examination Survey (NHANES) food consumption datarhodeling dietary exposures.
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While the main focus to date in SHEDS-Dietary hasrbon the cross-sectional algorithms, the
model is capable of modeling longitudinal dietaxp@sures to chemicals. For this purpose,
SHEDS-Dietary requires the construction of humamsamption diaries that cover the entire
simulation period of a model run. This period ikeofseveral months, a year, or
even longer. For a simulated individual, SHEDS-&xigtconstructs a longitudinal profile of food
consumption over a 365 day period with 3 optionsrass-sectional or 2-diary approach; an 8-



diary approach, and the “D&A” approach (Glen et 2007) described below. Issues relating to
longitudinal diary construction are described laethis manual.

In both CSFIl and NHANES, there are two-day diet@gsumption data for the subjects.
Therefore, we can use two-day data for the sansopdogether with many run iterations to
assemble the longitudinal data. For example, thielues are randomly assigned to one person
with two-day dietary consumption data, which ismi@a as one iteration. The same two-day data
will be randomly assigned with different residu@centrations. This is another iteration. In this
way, many iteration can be generated. Then, data the first iteration will be counted as day 1
and 2, the second as day 3 and 4 and so on. Iwdyislongitudinal data will be assembled.

The 8-diary longitudinal algorithm (Xue et al., 200s the same approach used in the SHEDS-
Multimedia model, which constructs longitudinaligity profiles from human activity diaries
drawn from EPA’s CHAD (Consolidated Human Activibatabase; McCurdy et al., 2000;
http://www.epa.gov/chadnetl CHAD typically includes just one day (24 houo$activities

from each person. SHEDS-Dietary creates modeldigiduals (reference population) by
randomly drawing a person from the Census data fddd consumption diaries used by
SHEDS-Dietary (NHANES or CSFlI; see later secticar®) grouped by age and gender, and for
each of these age-gender cohorts, ‘diary poolstagated based on Season and Day of Week
(weekday or weekend). For each modeled individBEEDS-Dietary constructs a longitudinal
profile of food consumption by randomly selectingp8d diaries (one weekend and one
weekday, for each of the four seasons) from theaguiate cohort-diary pools.
NHANES/WWEIA does not provide dates, so SHEDS-Dietandomly draws consumption
diaries from that survey to use this approach.

The August 2007 FIFRA SAP reviewed this approachdfetary exposure assessment, and
found 8 diaries to be insufficient. Thus, a moetaded and desirable option for assembling
year-long diaries is given in Glen et al., 2007e Tiser chooses target behavior and statistics to
control within- and between- person variance, agtd-day autocorrelation. Diaries are
preferentially sampled to produce the target bedraVvihis method, referred to as the “D&A
approach”, requires a few additional inputs to bsighated by the user, but allows for more
control over the properties of the assembled diafiidis diary assembly method requires the
user to:

1) select the diary property most relevant to exp@$or the current application (e.g., Total
Calories);

2) specify the “D” (diversity) statistic, which egks the within-person and between-person
variances for this diary property; and

3) specify the 1-day lag autocorrelation “A” inghdiary property.

Guideline values for the D and A statistics foruanter of diary properties have been calculated
using the steps below for the permethrin case studtyother values can be used as more data
become available:
1) Calculate the total amount of major vegetablesrdmuting to dietary permethrin
exposure. Those vegetables are spinach, cabb#geelearsley, celery and tomato.



2) Use the total amount of those vegetables consumfigiams) per day as index to
calculate D and A statistics.

3) Results: D=0.27 and A=0.06

4) Total calories consumption was used with 0.3 farid 0.1 for A statistics, based on data
from Lu et al. (2006a,b) (Alex Lu, personal comnuation), to assemble the longitudinal
diary for one year.
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There are two key differences between the singtenotal and cumulative exposures in the
SHEDS-Dietary model: 1) co-occurrence of the chamijcand 2) addition of exposures among
chemicals with similar mode of action. Different S&ode modules in the model are used to
accommodate these differences even though theg shaymmon algorithm. For pesticides,
there is a small data set storing pesticide cagaslly in three letters or digits. Selected
pesticides (pesticide codes) will be used to mérgeesidue data. Due to co-occurrence,
pesticides measured in the same raw agriculturahoadity (RAC) or food item will be stored
in the same place labeled by the same identifi¢hgbit will be selected as whole by Monte
Carlo simulation. For adding exposures to obtamuative exposure, relative potency factors
are used so that exposures of different pestia@dase added, weighted by the relative
toxicities.
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The timing of exposures throughout a simulatedlEyomes important as the Agency moves
toward integrating dietary exposure models withgobipgically-based pharmacokinetic models.
To account for eating occasions, SHEDS-Dietarggmees information from the detailed food
diaries and corresponding exposure calculationskage between SHEDS-Dietary exposure
outputs, which preserve variability of exposurethimi a dayand physiologically-based
pharmacokinetic (PBPK) models allows for refinedgeland risk analyses, and evaluation of
SHEDS-Dietary model performance against NHANES lunitoring data (Xue et al., 2010).

4 +

SHEDS modeling research has involved developingagpdying new methods for sensitivity
and uncertainty analyses (Xue et al., 2006; Zanteet al., 2007;
http://www.epa.gov/heasd/products/sheds_multimsdeds _mm.html
http://www.epa.gov/scipoly/SAP/meetings/2007/08140%.htm). These methods can be
applied to different model applications for idewiiig key factors, outliers, and data needs.

Plans and future research needs for SHEDS-Dietatyde the following:
Apply to other case studies with PBPK linkage, g&ity and uncertainty analyses,
model evaluation;
Expand model applications to local/community s¢afedifferent chemicals;
Refine longitudinal algorithms based on availalatag
Merge dietary & residential modules (match foodszonption and activity diaries);



Analyze impact of different residue sampling: sammedifferent residues within a day for
same foods eaten by an individual;

Possible refinements to drinking water allocations;

Explore enhancements to uncertainty analyses;

Expand the model to local scale applications féfeent chemicals, seasons, regions;
methods (including analyses of CSFIl and NHANESgxamine importance of region-
and season- specific dietary consumption amourtt$atierns on dietary exposure
estimates;

Consider other data sets for considering enhanitign-day modeling of exposures e.g.
Child Development Supplement to Panel Study of ime@®ynamics
(http://psidonline.isr.umich.edu/CDS/time_diary nemdhtm), American Time Use
Survey (ATUS) http://www.bls.gov/tus/#overviewdniversity of Maryland archive on
recent and historical data sets on individual tuse and activity patterns,
http://www.webuse.umd.edtuand

Conduct more research on sampling drinking watacentrations (e.g., randomly select
a year then apply daily concentrations throughlbetnhodeled calendar year).




1" # S

The SHEDS-Dietary Module overview is illustratedrigure 2-1, and details on the algorithms
are given in the following sections and the anmeataiode in Appendix G.

Monte i .

Carlo sl
sampling //‘\\5 —
applied F

NHANES Consumption:  Food consumption data from NHANES
Residue Concentration:  Residue concentration data by food item or commodity from TDS

Distribution fitting: fittings of residue data into suitable statistical distribution

Food Item: food products people in the survey consumed such pizza, raw apple

Commodity: raw agriculture commodity (RAC)

Usage factors: Pesticide usage percentages by RAC from USDA.

Process factors: concentration or dilution factors due to processes of food from RAC into food products.

Recipe files (EPA FCID): data base for percents of various RACs for the food products.
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Xue et al., 2010 describes the SHEDS-Dietary metlogy shown in Figure 2-1. For estimating
daily dietary exposure, detailed NHANES (or CSFabhd diaries are used by the SHEDS-
Dietarymodel to simulate food ingestion exposures by sg#pagating occasions for a simulated
individual (Figure 2-1). SHEDS-Dietapan use residues for food items as consumed, assvel
residues of raw agricultural commodities (RAC).eTkeported food items are matched with food
items in the FDA'’s Total Diet Study (TDS) where pilde (see step 1 in Figure 2-1). If TDS
residues are available for a particular food (eige, chicken), then SHEDS-Dietargndomly
draws a TDS residue from that corresponding resifisteibution of the same food. Otherwise,
the model applies the FCID recipe files to the NHZ®Nor CSFII food items and randomly
selects a residue for each of the RAC ingrediettsraling to the recipe (see step 2 in Figure 2-
1). Note that SHEDS-Dietary version 1 does not engnt the option of sampling residues from
food items as consumed, e.g., TDS.

Through the recipe files, the unmatched foods caoeslare matched by RAC so that residues
for those foods can be calculated. One option iEB8-Dietary version 1 for sampling residues
within a day is to draw the same residue valubat RAC is found in the same foods. A second
option is to draw different residue values for aene foods within a day. For non-detects, the
model can assign zero or % LOD, depending on teenatal usage information (see details
below). For each NHANES food diary, SHEDS-Dietaglests a residue value from an empirical
distribution for each TDS food or RAC. While a peutar commodity may be used in multiple
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foods, the cooking method may differ, and thusiilithave a different food form. Process

factors can then be applied (see step 3 in Figure Zhese factors account for food changes and
related concentration changes due to dilution ndyyetc.. Each simulated individual’'s exposure
for each commaodity is calculated by multiplyingiegtoccasion consumption with

corresponding residues. Summation of exposures éwary eating occasion for one day yields
the individual’s total daily exposure (see step #igure 2-1). Monte Carlo simulation is

applied to generate population estimates of diegappsure (see Figure 2-2). More details on the
food and drinking water ingestion exposure algonghare given below.

" #19$

SHEDS-Dietary v1 incorporates the data and decssiltustrated in Figure 2-1 above, and
calculations shown in Equations 1 and 2 belowalowate food ingestion exposure. The model
uses food consumption diaries to simulate indivisifaod ingestion exposures by separate
eating occasions. Reported consumption data anéioed with sampled chemical residues in
foods consumed, and concentration or dilution factioat adjust the residues for changes due to
food processing (Figure 2-1). This section brigilyoduces the equations used for calculating
dietary exposure and their inputs, which are dediaith subsequent sections.

Total daily exposure is calculated by summing expes across all commaodities, as depicted in
Equation (1). Each simulated individual’s exposiareeach commodity is calculated by
multiplying the eating occasion consumption with torresponding residues and process
factors:

Equation (1) — SHEDS-Dietary Equation for Estimatirg an Individual's Exposure from a Single Eating
Occasion

E=FxXCxP

Where

E=Individual’'s Dietary Exposure for a Single Eati@gcasion [mass chemical]
F=amount of food item consumed [mass food]

C=concentration in the food item [mass chemicalésrfaod]

P= process factors [unitless]

Equation (2) — SHEDS-Dietary Equation for Estimatirg an Individual's Total Daily Exposure from All
Eating Occasions

TE= S EEo
1-N
Where

TE = Individual's Total Daily Exposure
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Eeo = Individual’s Dietary Exposure for a Single Egti®ccasion
N= Number of eating occasions in a given day.

Population estimates are obtained by applying M@#edo simulation as shown in Figure 2-2;
the algorithms for computing an individual’'s totklily exposure are repeated thousands of times
to obtain a population cumulative density funct{@bF).

The food consumption diaries used by SHEDS-Dieday other dietary exposure models (such
as those shown in Table 2-1) contain informatiorihentiming and amounts consumed as
reported by the survey respondents. Note that émabwater consumption quantities are
recorded in units of ounces, cups, or by countggfj, whole, Table 2-1). These units are
converted to grams and ml for calculations. Apmerdcontains details on food consumption
data used in SHEDS-Dietary version 1.

&"%% #llll #llll I(o)«kH . - .-//m!!
: Consump Food
Time of o Amount :
SEQN Day Food Description (unit code) tion Source
(gm) /1
1 7:00 AM Milk, cow's, fluid, whole 6 fl.oz 183 Store
(10205)
2 Egg, whole, fried W/ LARD (goéi(g) 92 Store
10:15 AM 5C
3 White potato, home fries W/ LARD (10205) 388 Store
4 Chicken, drumstick, with or without 1 XX 52 Store
) bone, roasted, skin eaten (61343)
6:00 PM 5C
5 White potato, home fries W/ LARD (10205) 388 Store
) . , . 6 fl.oz
6 8:00 PM Milk, cow's, fluid, whole (10205) 183 Store

/1 The Food Source variable is based on the quesWhere was the food item obtained?’ (1=stote,)e

In principle, food residues as well as drinking @vatoncentrations may also vary by eating
occasion and/or foods consumed throughout theW@i. that modeling assumption, the
SHEDS-Dietary eating occasion approach tracks axpsshroughout the simulated day based
on the food diary data. Currently in SHEDS-Dietdhe user has 2 options for sampling
residues consumed by an individual on multiplengaticcasions within a day: (1) same residue
sampled for same RAC and food items within a giday; (2) different residues sampled for all
RAC and food items within in a given day.
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In SHEDS-Dietary version 1.0, empirical distributsoare be used for raw agricultural
commodities (RAC; see Appendix C). Reported fdedths are matched with food items (e.g.,
2% milk, raw apple) in the Total Diet Study (TDS;
http://www.fda.gov/Food/FoodSafety/FoodContaminAdidteration/TotalDietStudy/default.ht
m) where possible; the model randomly draws a vesftbm that corresponding TDS residue
distribution of same food. For unmatched foods,rttodel applies FCID recipe files to the food
items and randomly selects a residue for eacheoRMC ingredients according to the recipe so
that residues for those foods can be calculatesl &typroach is used for pesticides).

The current version of SHEDS-Dietary does not idelthe option of matching reported foods
(note that modifications were conducted for themis case study to allow food items as
consumed as depicted in Figure 2-1) where possiittefoods reported “as eaten” (e.g., pizza
rather than the pizza RAC tomatoes, flour, etcg.(én the FDA in the TDS), so that residues
for those foods can be sampled; the model randdnalys a residue from that corresponding
food residue distribution. A particular commodityayrbe used in multiple foods, with different
cooking methods; thus, it will have a different dolorm reported. Process factors can be applied
that account for food changes and related condenirehanges due to dilution, drying, etc.
Through recipe files (see Appendix E), unmatchedisoconsumed are matched by RAC so that
residues for those foods can be calculated. SHER&E randomly selects a residue from the
corresponding RAC-food form distributions for thasematched foods, according to the recipe
amounts of those RAC. The exposure from each contyafmbd form (RAC-FF) is calculated

by multiplying that residue value with the amouahsumed.

Assignment of RAC residues for non-detects dependse percent detected in PDP for the
commodity and the percent of crops using that cbhaimiFor example, if 20% of a crop is treated
with Chemical X, and 5% of samples in PDP had dalde residues, then SHEDS-Dietary used
the actual values for the 5%, assumes %2 LOD for, 5% O for 80%. If the crop is not treated
with Chemical X, the LOD is assigned zero.

Total daily exposure is calculated in SHEDS-Dietayysumming chemical exposures across all
commodities. Summation of chemical exposures feosry commodity and every eating
occasion for one day yields the individual's dadyal dietary exposure.

This equivalence is illustrated with the followisgnple numerical example using the diary from
a 1 yr old child (Table 2-1; CSFIl ID=28517-2-2)f we assume that 47 grams of potatoes was
consumed at 10:15 am from food, “White potato, hdmnes W/ LARD” and a residue of 1 ppm
was drawn only for ‘potatoes’, then the exposur@ @17 mg for this eating occasion. At 6:00
pm, the same amount of the same food was consuherdfore, 1 ppm of residue for the potato
was used again due to the same food, then expfisuies eating occasion is also 0.047 mg:
Exposure = 47 gms x (1/1000) x 1 (mg/kg) = 0.04¥ m

If exposure from egg was 0.05 mg and that was tieaiher food to contribute any exposure
that particular day, then total daily exposuretfar subject will be the summation of 0.047,0.047
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and 0.05, i.e. 1.44 mg/day. Options for modelingdfoesidues (i.e., randomly drawing different
residues) are discussed in a subsequent sectianod&l specification could select a new residue
for the same RAC-FF consumed through different $o@dg., milk versus other dairy products).

This process is repeated for many simulated indadsl (for each food consumption diary, or
simulated person-day) via Monte Carlo sampling {Sgare 2-2) to generate population
estimates of dietary exposure (Xue et al., 20Edx. any particular diary, a Monte Carlo
simulation is performed to select a residue comaéinh for each food commodity (raw
agricultural commodity — food form; RAC-FF).

% &

The SHEDS-Dietary drinking water exposure algoritisraimilar to that for food exposure.
Because the CSFII data does not provide informatiotiming and amounts of direct water
intake throughout the day, SHEDS-Dietary curreditributes total direct water consumption
from this database in 6 equal amounts at 6 fixeesi (6am, 9am, 12pm, 3pm, 6pm, 9pm). The
more recent NHANES 2005-2006 did collect informatan timing and amounts of direct water
intake throughout the day, so that information aso be used directly in SHEDS-Dietary in the
future to assess timing and amounts of direct drmkvater (e.g., tap, bottled) and indirect
drinking water (e.g., infant formula, ‘kool aid’offee, tea, water used in cooking) intake within a
simulated person-day (see Appendix A). Total drigkvater consumed (both direct and
indirect water consumption) is assumed to contagnsime concentration, i.e., only one
concentration value is selected in the Monte Csirfrulation for each eating occasion. SHEDS-
Dietary randomly draws a drinking water concentrafior each person-day (similar to DEEM-
FCID). One residue value is randomly selectedraotiplied by total water intake to obtain
drinking water exposures. In principle, drinkingteraconcentrations may vary based on source
(e.q., tap, bottled, other source); this is an afdature research. Currently, SHEDS-Dietary
randomly draws drinking water concentration for ghyen day (no seasonality).

This section summarizes the data used by SHED St assess dietary exposures.

The primary sources of consumption data used in[35tBietary to model dietary exposures to
pesticides are the food consumption diaries intl& Department of Agriculture’s Continuing
Survey of Food Intakes by Individuals (CSFII) datsé and in the NHANES/What We Eat in
America (WWEIA) 1999-2006 database (see Appendices, D, E). These surveys contain
information regarding the real-time reported amafrfbod and water consumed by individuals,
i.e. amounts of food and drinking water reportedngyviduals for each separate eating occasion.

The CSFII food diaries contain information colletterough a multiple pass 24-hour dietary
recall instrument that was administered by traiméerviewers in the respondents’ homes (Day
1) or by phone interview (Day 2). Individuals wegked to provide food intake on 2
nonconsecutive days (3 to 10 days apart) as welbei®economic and health-related
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information. A total of 20,607 individuals providiéwo 24 hour food diaries (total of 41,214
diaries)during the initial survey period, 1994-1996, anabtigh a children’s supplemental
survey conducted in 1998 to address FQPA requirtsribat the USDA provide food intake data
for a statistically adequate sample of childrenuse by the EPA to estimate exposure to
pesticide residues. Table 2-2 shows an examplg fian CSFII.

The NHANES/WWEIA 1999-2006 food consumption datd,f&2 diaries) are also 24 hour
recalls. The first day (Day 1) diary was collectecbugh in-person interviews in the Mobile
Examination Centers (MEC), while the second dayn@4r recall diary is collected by telephone,
approximately 10 days after the in-person interview

%% #Iln #III % nn

Example of food consumption data for HHID=11328 and SPNUM=2 for two days
(Female and 1 years old)

DAYCODE OCC_TIME foodname FOODAMT (grams)
1 800 MILK, COW'S, FLUID, 1% FAT 183
1 800 APPLE JUICE, W/ ADDED VITAMIN C 186
1 800 APPLE, RAW 138
1 800 CHEERIOS 30
1 800 MILK, COW'S, FLUID, 1% FAT 122
1 930 CRACKERS, CHEESE 124
1 1230 WHITE POTATO, CHIPS (INCL FLAVORED) 40.5
1 1230 PEPPER, SWEET, RED, RAW 745
1 1230 PEAR, RAW 166
1 1230 APPLE, RAW 69
1 1230 MILK, COW'S, FLUID, 1% FAT 122
1 1230 BREAD, POTATO 52
1 1230 TUNA SALAD 26
1 1530 APPLE JUICE, W/ ADDED VITAMIN C 186
1 1830 RICE, FRIED, W/ MEAT/POULTRY 198
1 1830 PORK, SPARERIBS, COOKED, LEAN ONLY 72
1 1830 CHICKEN PATTY/FILLET/TENDERS, BREADED, COOKED 176
1 1830 MILK, COW'S, FLUID, 1% FAT 122
1 1830 CRANBERRY JUICE DRINK W/VIT C ADDED(INCL COCKTAIL) 126.5
1 1900 ICE CREAM, REGULAR, NOT CHOCOLATE 44
2 800 MILK, COW'S, FLUID, 1% FAT 122
2 800 TEA, MADE FROM POWDERED INSTANT, PRESWEETENED 118.4
2 800 CHEERIOS 375
2 800 MILK, COW'S, FLUID, 1% FAT 183
2 1000 PUFFED RICE CAKE 9
2 1000 TEA, MADE FROM POWDERED INSTANT, PRESWEETENED 118.4
2 1200 CHICKEN VEGETABLE SOUP,W/RICE,MEXICAN(SOPA / CALDO DE POLLO) 242
2 1200 BREAD, ITALIAN, GRECIAN, ARMENIAN 20
2 1200 MILK, COW'S, FLUID, 1% FAT 122
2 1500 APPLE, RAW 138
2 1830 CORN DOG (FRANKFURTER/HOT DOG W/ CORNBREAD COATING) 88
2 1830 MILK, COW'S, FLUID, 1% FAT 122
2 1830 COUSCOUS, PLAIN, COOKED, FAT ADDED IN COOKING 81
2 1830 PORK & VEG (W/ CAR/DK GREEN, NO POTATO), NO SAUCE 81
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For the purpose of assessing food tolerance, tihedeReloped the Food Commodity Intake
Database (FCID) that converts CSFIl food items.{(@ple pie, hamburger, milk and other diary
products) into Raw Agricultural Commodities (RAGded on likely cooking method and food
form (FF) (Appendix E). The FCID database contagtspes or each food item reported in the
1994-1996, 1998 CSFII diaries. These recipesTabée 2-3) allow the model to calculate
contributions from each food (e.g., pork and velgle fried rice) to aggregate exposures. FCID
recipe files break down foods into 553 RAC. Resipee being developed by OPP for new
NHANES/WWEIA food items (anticipated release, RAILO).

The FCID commodity diaries may underestimate dyegaposures from some food items. For
example, the FCID recipe decomposes an 8 oz. gfagkole milk (244 g) into three
components: water (88%), fat (3.3%), and non-fits¢8.7%). A simulation based on the food
recipes entails randomly selecting a residue foh edi the three components, and calculating
contributions based on the corresponding weighits:@ 9 g, and 21 g, respectively. The
assumption that residues are independent may deadlderestimating exposures to the extent
that some components (e.g., water and fat) con¢gsidues (treated), while the other components
(non-fat solids) do not. Ideally, the user may tardirectly apply the PDP data, because milk
samples, collected from distribution centers amesmarkets, reflect foods as consumed by
persons, and thus, do not require additional modelssumptions regarding correlations
(independence) across the components. The adeaotdlge FCID commodity diaries is that it
facilitates developing anticipated residues fordreds of other diary products, since the recipes
account for different contributions from water,, fahd non-fat solids. SHEDS-Dietary version 2
will allow the user to specify residues for botlodis as eaten and/or commodities - as applied in
Xue et al., 2010.
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Food Items RAC CM_name CS name FF_name Percent
PORK & VEG (W/ CAR/DK Bean, lima, succulent Not specified  Cooked Fresh or N/S 3.96
GREEN, NO POTATO), NO Bean, snap, succulent Not specified  Cooked Fresh or N/S 10.45

SAUCE Carrot Not specified Cooked  Fresh or N/S 15.84
Corn, sweet Not specified  Cooked Fresh or N/S 15.84

Pea, succulent Not specified Cooked  Fresh or N/S 10.45

Pork, fat Not specified Cooked  Fresh or N/S 5.995

Pork, meat Not specified  Cooked Fresh or N/S 37.127

'RICE, FRIED, W/ Bean, mung, seed Fried Cooked Fresh or N/S 0.486
MEAT/POULTRY Chicken, fat Fried Cooked  Fresh or N/S 0.504
Chicken, meat Fried Cooked  Fresh or N/S 6.285

Corn, field, oil Not specified Refined  Not Applicable 0.201

Cottonseed, oil Not specified Refined  Not Applicable 0.319

Egg, whole Fried Cooked  Fresh or N/S 10.741

Olive, oil Not specified Refined  Not Applicable 0.082

Onion, green Fried Cooked  Fresh or N/S 2.8

Pea, succulent Fried Cooked Fresh or N/S 3.42

Peanut, oil Not specified Refined  Not Applicable 0.055

Rapeseed, oil Not specified Refined  Not Applicable 0.169

Rice, white Fried Cooked Fresh or N/S 24.24

Safflower, oil Not specified Refined  Not Applicable 0.001

Sesame, oil Not specified Refined  Not Applicable 0.001

Soybean, oil Not specified Refined  Not Applicable 3.556

Soybean, seed Fried Cooked  Fresh or N/S 0.956

Sunflower, oll Not specified Refined  Not Applicable 0.007

Water, indirect, all sources Fried Cooked Fresh or N/S 39.31

Wheat, flour Fried Cooked  Fresh or N/S 0.376

18



4 $% #*"

#* %

3

Example of food consumption data for HHID=11328 and SPNUM=2 for two days

(Female and 1 years old)

DAYCODE  OCC TIME fogdname - RAC CM_name CS_name FF_name amount_gram
1 800 MILK, COW'S, FLUID, 1% FAT Milk, fat Not specified Uncooked Fresh or N/S 194
1 800 MILK, COW'S, FLUID, 1% FAT Milk, nonfat solids Not specified Uncooked Fresh or N/S 16.21
1 800 MILK, COW'S, FLUID, 1% FAT Milk, water Not specified Uncooked Fresh or N/S 164.85
1 800 APPLE JUICE, W/ ADDED VITAMIN C Apple, juice Not specified Uncooked Fresh or N/S 18593
1 800 APPLE, RAW Apple, fruitwith peel Not specified Uncooked Fresh or N/S 138.00
1 800 CHEERIOS Beet, sugar Not specified Refined Not Applicable 0.40
1 800 CHEERIOS Cassava Not specified Cooked Dried 0.01
1 800 CHEERIOS Com, field, starch Not specified Cooked Dried 0.93
1 800 CHEERIOS Qat, groats/rolled oats Not specified Cooked Dried 29.94
1 800 CHEERIOS Potato, flour Not specified Cooked Dried 0.01
1 800 CHEERIOS Rice, flour Not specified Cooked Dried 0.01
1 800 CHEERIOS Sugarcane, sugar Not specified Refined Not Applicable 051
1 800 CHEERIOS Wheat, flour Not specified Cooked Dried 0.01
1 800 MILK, COW'S, FLUID, 1% FAT Milk, fat Not specified Uncooked Fresh or N/S 129
1 800 MILK, COW'S, FLUID, 1% FAT Milk, nonfat solids Not specified Uncooked Fresh or N/S 10.81
1 800 MILK, COW'S, FLUID, 1% FAT Milk, water Not specified Uncooked Fresh or N/S 109.90
1 930 CRACKERS, CHEESE Barley, flour Baked Cooked Fresh or N/S 045
1 930 CRACKERS, CHEESE Cottonseed, oil Not specified Refined Not Applicable 2.08
1 930 CRACKERS, CHEESE Milk, fat Baked Cooked Fresh or N/S 4.49
1 930 CRACKERS, CHEESE Milk, nonfat solids Baked Cooked Fresh or N/S 4.08
1 930 CRACKERS, CHEESE Milk, water Baked Cooked Fresh or N/S 115
1 930 CRACKERS, CHEESE Pepper, nonbell, dried Baked Cooked Fresh or N/S 0.27
1 930 CRACKERS, CHEESE Soybean, oil Not specified Refined Not Applicable 2391
1 930 CRACKERS, CHEESE Wheat, flour Baked Cooked Fresh or N/S 92.66

WHITE POTATO, CHIPS (INCL
1 1230 FLAVORED) Com, field, oil Not specified Refined Not Applicable 1.30
WHITE POTATO, CHIPS (INCL
1 1230 FLAVORED) Cottonseed, oil Not specified Refined Not Applicable 097
WHITE POTATO, CHIPS (INCL
1 1230 FLAVORED) Potato, chips Fried Cooked Fresh or N/S 26.14
WHITE POTATO, CHIPS (INCL
1 1230 FLAVORED) Rapeseed, oil Not specified Refined Not Applicable 054
WHITE POTATO, CHIPS (INCL
1 1230 FLAVORED) Safflower, oil Not specified Refined Not Applicable 0.00
WHITE POTATO, CHIPS (INCL
1 1230 FLAVORED) Soybean, oil Not specified Refined Not Applicable 11.02
WHITE POTATO, CHIPS (INCL
1 1230 FLAVORED) Sunflower, oil Not specified Refined Not Applicable 0.04
1 1230 PEPPER, SWEET, RED, RAW Pepper, bell Not specified Uncooked Fresh or N/S 74.50
1 1230 PEAR, RAW Pear Not specified Uncooked Fresh or N/S 166.00
1 1230 APPLE, RAW Apple, fruit with peel Not specified Uncooked Fresh or N/S 69.00
1 1230 MILK, COW'S, FLUID, 1% FAT Milk, fat Not specified Uncooked Fresh or N/S 129
1 1230 MILK, COW'S, FLUID, 1% FAT Milk, nonfat solids Not specified Uncooked Fresh or N/S 10.81
1 1230 MILK, COW'S, FLUID, 1% FAT Milk, water Not specified Uncooked Fresh or N/S 109.90
1 1230 BREAD, POTATO Beet, sugar Not specified Refined Not Applicable 129
1 1230 BREAD, POTATO Cottonseed, oil Not specified Refined Not Applicable 013
1 1230 BREAD, POTATO Guar, seed Baked Cooked Fresh or N/S 0.06
1 1230 BREAD, POTATO Milk, fat Baked Cooked Fresh or N/S 0.49
1 1230 BREAD, POTATO Milk, nonfat solids Baked Cooked Fresh or N/S 227
1 1230 BREAD, POTATO Milk, water Baked Cooked Fresh or N/S 017
1 1230 BREAD, POTATO Potato, flour Baked Cooked Fresh or N/S 117
1 1230 BREAD, POTATO Soybean, flour Baked Cooked Fresh or N/S 0.29
1 1230 BREAD, POTATO Soybean, oil Not specified Refined Not Applicable 150
1 1230 BREAD, POTATO Sugarcane, sugar Not specified Refined Not Applicable 164
1 1230 BREAD, POTATO Wheat, flour Baked Cooked Fresh or N/S 33.30
1 1230 TUNA SALAD Beet, sugar Not specified Refined Not Applicable 0.02
1 1230 TUNA SALAD Celery Not specified Uncooked Fresh or N/S 190
1 1230 TUNA SALAD Coriander, leaves Not specified Cooked Canned 0.01
1 1230 TUNA SALAD Coriander, seed Not specified Cooked Canned 0.01
1 1230 TUNA SALAD Com, field, syrup Not specified Cooked Canned 168
1 1230 TUNA SALAD Cucumber Not specified Cooked Canned 2.00
1 1230 TUNA SALAD Egg, whole Not specified Cooked Canned 0.16
1 1230 TUNA SALAD Egg, yok Not specified Cooked Canned 011
1 1230 TUNA SALAD Fish-saltwater finfish, tuna Not specified Cooked Canned 14.08
1 1230 TUNA SALAD Ginger, dried Not specified Cooked Canned 0.01
1 1230 TUNA SALAD Herbs, other Not specified Cooked Canned 0.01
1 1230 TUNA SALAD Lemon, juice Not specified Cooked Canned 0.05
1 1230 TUNA SALAD Onion, dry bulb Not specified Uncooked Fresh or N/S 254
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Table 2-2 provides an example of real dietary comsion data for one person over two days.
Table 2-3 shows an example recipe files for twalfdems consumed by the subjects (there are
many other food items in the recipe files not shpwihrough recipe files, consumption data in
Table 2-2 can be converted into the format in T&be so that the exact amount of RAC
consumed by the subject will be used to be assigitbdresidue concentrations by RAC.

As discussed above, SHEDS-Dietary version 1 distetb total direct water consumption from
the CSFIl database in 6 equal amounts at 6 fixaddi(6am, 9am, 12pm, 3pm, 6pm, 9pm). The
more recent NHANES 2005-2006 did collect informatan timing and amounts of direct water
intake throughout the day, so that information akso be used directly in SHEDS-Dietary in
future versions.

Another option for drinking water consumption det&HEDS-Dietary is available. For any
modeled individual, a drinking water diary is randy selected from the Bayer DWCS data
based on similar socioeconomic characteristics, @geder, season). Bayer CropScience
sponsored a study on direct drinking water consiongntitled “Drinking Water Consumption
Survey” (DWCS), to evaluate this issue (Barrajle2@04). The objective of this study was to
obtain a distribution of water intake for a 24-htiare period that was nationally representative
sample of the US population. The DWCS was conduictéwo waves, in August 2000 (wave
1=- summer), and March 2001 (wave 2 = winter). fdport provides the following description
on the study design (Barraj et.al. 2004, pp.9-10):

“The National Product Database group (NPD) was s@io to conduct this survey
because of its experience in tracking the consumgtabits of the US population since
1980 through its National Eating Trends (N§Bervice (NEY, 2004).” “Two

nationally representative samples (one for eachejawere extracted from a core sample
of 250,000 households from NPD’s Home Testingtlrist{HTI) consumer panel. The
sample for wave 1 included 3,000 households rangseiected from the core sample of
250,000 households, while in an effort to incredm@enumber of children in the survey,
the sample for wave 2 included 650 households nasgleelected from households with
children less than 6 years of age in addition 108, households randomly selected from
the core sample.” “One thousand nine hundred niftety participants in 994
households (33% response rate) completed thewaste of the survey, and 2,950
participants in 1,320 households (36% response) ratepleted the second wave of the
survey.”

Participants recorded their water consumption (tirhéay and amount consumed) over a one-
week (7 day) period. The following information waslected in the DWCS diaries:
Date and day of the week;
Age and gender of the household member;
Source of the home’s drinking water (municipal, Yvel
Time period of water consumption episode (18 hountigrvals starting at 6 am,
and one 6 hr interval corresponding to the midnhaim period);
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Number of ounces of water consumed per time pdnod-ounce bins);
Where the consumption episode occurred (home/wosklmool/other);
Whether the water was consumed with a meal; and

The type of water consumed (tap/bottled).

A number of diaries were not used due to incompetaissing information. The resulting
database contained data from 4,198 individuals f2¢h84 households, providing a total of
27,282 person-day diaries (approximately 83% oftoha of all participants returned diaries for
all 7 days).

" # $% &

The pesticide use information, in particular thecpat of crop treated (PCT) with a particular
chemical, is used to determine how many samples natrtreated and may be assumed to have
no residues (true zero). This variable may come feither the USDA National Agricultural
Statistics Service or proprietary data.

“Process factors” include concentration or dilutfantors due to cooking or processing of food
from RAC into food products. These data used ifEBB-Dietary may come from registrant
submission and the peer reviewed literature.

( !
SHEDS-Dietary can use point estimates or (empjritistributions from any source, modeled or
measured (e.g., Field Trials, USDA/PDP, FDA/TDSZRREXAMS). Field Trial Studies are
tests conducted by registrants to determine toberan Raw Agricultural Commodities. Field
trial residues may exceed anticipated residues WweRAC: (i) includes inedible portions (e.g.,
banana and orange peel, watermelon rind, etq.)s @enerally cooked (e.g., pumpkin), and (iii)
is established for feed purposes (e.qg., field estrcornmeal).

The USDA Pesticide Data Program (PDRp://www.ams.usda.gov/AMSv1.0/ppfests
commodities in U.S. food supply for pesticide resis. It has tested over 85 different
commodities: fresh/frozen/canned fruit and vegetsbiruit juices, dairy products, grains, corn
syrup, nuts, peanut butter, honey, poultry, beafk pcatfish. PDP has tested for more than 440
different pesticides. Samples are collected bpdr#icipating States, representing about 50
percent of the Nation's population and all regions.

FDA'’s Total Dietary Survey (TDS; FDA 1991-2004)asnarket basket study program that
collects and analyzes ~280 foods for levels ofipielst residues, industrial chemicals, and toxic
and nutrient elements. Foods in TDS are prepardigesvould be consumed (table-ready) prior
to analysis.
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As with the food residue data, SHEDS-Dietary caap@int estimates or (empirical)
distributions of drinking water concentrations wsany source, modeled or measured (Field
Trials, PDP, FDA; PRZM-EXAMS, etc.).

Environmental fate models that can be used to grédinking water concentrations are PRZM-
EXAMS and SCIGROWnhttp://www.epa.gov/oppefedl/models/waleiThe Agency generally
uses environmental fate models (e.g., PRZM-EXAMS)dnerate predicted drinking water
concentrations for pesticides. These models ardirectly used in SHEDS-Dietary, but can be
used to estimate drinking water concentration isfort particular modeling scenarios of interest.

)t

When developing the SHEDS-Dietary model, a largalmer of decisions and assumptions
needed to be made regarding the scientific basihémodel algorithms and input data. The
reasoning behind a number these critical decig®pgesented in this section.

" + + | _

Since NHANES has not yet focused special atterdionhildren, the CSFII survey continues to
have many more food diaries for children. For eplnCSFIl has 2,972 infant diaries versus
1,971 diaries in NHANES. For children aged 1-argeold, a population of concern due to
potentially high exposures, CSFIl has 4,287 diaree2,460 diaries in NHANES. Another issue
is whether or not to use all food diaries, or siyrthe two day diaries. In contrast to CSFIl data,
only one day of food intake was collected during first four years (1999-2002) of the

NHANES survey. Therefore, NHANES has a slighthgkx total number of one day (only)
diaries (N=22,035 subjects) as it does two dayieBgiN=16627 subjects, or 33254 person-days).

Some alternative approaches for imputing valuesnigsing data in CSFIl have been explored.
The two fields of interest are: (i) direct drinkimgater, and (ii) time of eating occasion. The
modeled results appear to be relatively robust vafipect to data imputations on these two
variables. Approximately 738 diaries, or 1.8%lud total 41,214 CSFIl food diaries did not
report any information regarding direct drinkingtaraconsumption. SHEDS-Dietary (as well as
Calendex-FCID and the other models) assume thaettliaries did not consume any direct
drinking water. DEEM-FCID uses only the 40,476k 41,214 CSFIl food diaries that
responded to this question (may have included petbyait did not consume any direct drinking
water) when conducting drinking water risk assesgmdut this subset generally has not
affected any of the comparisons with SHEDS-Die{drinking water alone, or food+drinking
water). For eating occasions, approximately 3/@¢8rds, or 0.6% of the 598,829 food records
in the CSFIl database had missing values for the tif day question. SHEDS-Dietary replaced
those missing values with 12:00 noon since it masmost reported frequency reported, and
assumes zero consumption for non-reports in driqhiater intake.
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SHEDS-Dietary allows Monte-Carlo simulations toldzesed on specific food items, as well as
raw agricultural commodities (RAC-FF). Figures 2+id 2-2 illustrates this process. If residues
are specified for particular food(s) (e.g., cheesgér), then SHEDS-Dietary randomly draws a
residue from that corresponding distribution antbigs any residue data assigned to the
ingredient RAC-FF (e.g., beef, tomatoes, wheat).etEresidues are not specified for any food
item, then the model randomly draws residues fohed the RAC-FF ingredients. The Agency
generally requires information at the commodityeleand so this option may be applied to a
certain category of food items, such as milk (vermster dairy products), and meats (‘steak’).

The current version of SHEDS-Dietary randomly drdwssidue value for each commodity
(RAC-FF) and applies that commodity residue tdalds, on all eating occasions. However,
the Monte Carlo simulation can draw a new fooddesifor each eating occasion. The Agency
asked the 1999 SAP, “Under what circumstances dhbel EPA consider using the (DEEM)
Eating Occasion approach?” The Panel (1999) noted:

“Dietary exposure analysis is an extremely complecess. It utilizes many pieces of
data from different sources, each carrying its dimitations and deficiencies for the
purpose. Therefore, a careful documentation ofiitabase limitations and the
uncertainties associated with the estimated expadswessential for a proper
interpretation of the exposure estimates.” 1

The qualifying comments reflect a complexity in @aoting for differences in eating habits
across the population. To illustrate this poihg tood consumption diary presented above
(Table 2-1) indicates that the 1 yr old consumedsiiime food (‘home fries’) on two different
eating occasions. ltis likely that the child hiafkovers’ in the evening meal. If that is thesea
(or more home fries were prepared from the sameobpgtatoes), then it would be appropriate
to assume that the same composite residue waspmsboth eating occasions. On the other
hand, if the child consumed two servings of ‘homesf from different fast food restaurants on
two different eating occasions, then it may be nameropriate to randomly draw separate
residues for each eating occasion. Such condltimpndeling decisions can better made after a
closer inspection of the food consumption datadegision rule based on a few more variables
(e.g., food item and primary source of food) maynbpful to determine if different residues
should be drawn for subsequent eating occasiongpmatine same residue can be applied to all
eating occasions. We have found that this modelssyimption often does not have a significant
effect on the 99.9th for food-only exposure assesgst— since most people consume various
foods on only a single eating occasion as notedeNMC CRA (USEPA FIFRA SAP 2005,
2007); (Nako, et. al, 2007 ISEA cited earlier).

One of ORD’s/OPP’s planned activities is to conduatore thorough systematic review of the
food consumption diaries. We anticipate that surtdlyses may help towards developing
decision rules for selecting or not selecting a nesidue. For example, if the commodity comes
from the same food items, then the model usesaime sesidue. If not, then the model compares

1 FIFRA SAP (2000) Report No. 2000-01B, May 280@, Page83-35.
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the foods’ sources, time of eating occasions, atiteifoods were eaten at home. If those factors
differ, then the model selects different residwse retains the same residue. The potential for
different decision rules also suggests the devedspraf some type of uncertainty analyses.

" +. +

The approach for constructing longitudinal consuampprofiles is currently being reevaluated,
since the National Health and Nutrition Examinat®urvey (NHANES) food consumption data
does not provide data on calendar dates (seasmmpaations (region). Available food
consumption data are cross-sectional (2days fandinidual). When randomly drawing multiple
one-day diaries from multiple individuals that areended to represent a single individual's
behavior over time, the modeler faces a dilemma wjitimizing inter- and intra-person
variability (see Figure 2-3). If a small numberdidiries are drawn for each individual to cover a
long simulation period, then each diary must based many times; that is, each diary must be
used on many different dates in the simulatiorefr@sent the individual’s behavior (for dietary
exposure, the key variable is total caloric constimmp. While this creates repetitive or habitual
behavior patterns, it also narrows the behavigrate and lessens the within-person
consumptionvariability. Using many different oneydharies would address these last two
concerns by broadening the simulated individua#sdvioral space and increasing the within-
person variability. However, this approach woul@eerbate other problems. In particular, any
two persons belonging to the same cohort will difagwr diaries from the same diary pools, and
the samples will tend to converge to the same dararage behavior of the cohort.
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Most of the existing random-draw methods of diagstion assume that all diaries that are
suitable (meaning they are from the correct agelgeaohort and match the chosen daytype) are
equally likely to be chosen, and that any subsetgthews are independent of prior draws. As
detailed in the SHEDS-Multimedia 2007 SAP documents
(http://www.epa.gov/scipoly/sap/meetings/2007/08140%.htm Glen et.al. (2007) proposed a
new method for developing longitudinal activity ples. This “D & A” (Diversity &
Autocorrelation) method presented above drops thetbe assumptions by assigning each
simulated person a “target behavior,” and thengpesitially sampling diaries to produce the
target behavior. The method assigns target betsasiwt executes the preferential sampling
based on the value of D (diversity) specified by tmodeler. If not executed carefully,
preferential sampling can result in behavioral ésasvhere some diaries are consistently drawn
more often than others. The method contains inteutes for this sampling that ensure that over
a large number of simulated persons, all availdtdees in each diary pool will be sampled
nearly uniformly.

In this method, a new random draw is made for edagyin the simulation. Thus, a one-year
longitudinal diary would be comprised of poten§a65 different diaries. The D statistic affects
the width of the diary selection probability peakwnd the target behavior, with a low D giving

a broad peak and a high D giving a sharp, narrak.pg@epending on the width of this peak and
the number of diaries in the pool, some diaries beagelected multiple times, but others may be
selected just once or not at all.

The longitudinal data from Lu et al., 2006a,b (Alax personal communication) were used to
develop the D and A statistics needed to applyaies et al., 2007 approach for SHEDS-Dietary
longitudinal diary construction. We need to mddepitudinal food consumption in order to
account for chemical half-lives and seasonal padter exposures across three primary sources:
food, drinking water, and non-dietary exposuresifresidential uses. The longitudinal
dimension does not appear to be critical for olgirestimates of a single total daily exposure at
per capita upper percentiles (see US EPA (2004dore comparisons). A focus on longitudinal
exposures may expand as the Agency continues wagephysiologically-based
pharmacokinetic models (PBPK) for pyrethroids atiteppesticides. The 2005 SAP noted that
one-day simulation models may underestimate riskarry-over effects from consecutive days
of exposures are of concern.2 All three sourcasdfdrinking water and residential) have a
potential for seasonal exposure patterns (posaisecorrelation). We can anticipate strong
patterns in drinking water exposures since mospleeconsume water daily, and both the surface
water and ground water models generally produgeiig water concentrations that exhibit
positive autocorrelation. Similarly, non-dietaipesures from residential uses will reflect
seasonal patterns in product usage, as well aslabons in daily activities for a particular

2 FIFRA SAP (2005), Minutes, p.10, “In particuldrone applies a 4.1-fold inter-species scalirgdato the 5.4 hr
half-time for reversal of brain AChE inhibition rats, one obtains a predicted half-time of 22 ith&n70 kg human
adult. Such a long half-time would force the r@ssessment model to address carryover of inhibitem one day
to the next. In considering this issue, the Agestoyuld take into account cases where there is@ dependency
for inhibition reversal half-lives.” p.56.
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person. For food, one can conceive an individuatipasing a bag of treated apples, and
consuming one or a few apples from that bag ovesecutive days.

The relative importance of these three sourcesi(fdonking water, and residential) vary by
chemical, as well as across individuals within bggmpulation. In two companion papers, Lu et.
al. (2006a, 2006b) reported that residential uppgar to be more important for exposures to
some synthetic pyrethroids, while dietary exposamgsear to be relatively more important for
some organophosphate pesticides. Their assessmged on a longitudinal study of 23
elementary school-age children, using urinary naits as exposure biomarkers. The
researchers collected two spot daily urine samfilsg;morning and before-bedtime voids,
throughout a consecutive 15-day study period, whatsisted of three phases. Children
consumed their conventional diets during phaseagqd-3) and phase 3 (days 9-15). During
phase 2 (days 4-8), organic food items were suibstitfor most of children’s conventional diet,
including fresh fruits and vegetables, juices, pssed fruit or vegetables (e.g., salsa), and wheat-
or corn-based items (e.g., pasta, cereal, popooiehips) for 5 days. Meats and dairy products
were not substituted. A description is providedhe paper: “Parents were asked to request
organic foods for their children in phase 2 with toal of exactly replacing the items the
children would have normally eaten as part of themmventional diet. This method ensured that
any detectable change in dietary pesticide exposatsd be attributable to the organic food
rather than a change in the diet.”3 The reseasdoend lower levels of two organophosphate
pesticides during phase 2 when organic foods wereaqed, but no observable change in levels
of pyrethroid insecticides. However, they did fimdignificant correlation between the
homeowners self-reported use of pyrethroid prod{it& household users) and concentration
levels of two pyrethroid metabolites (Lu, C. et.2006b).

The literature also contains alternative methodsléveloping longitudinal consumption

profiles; we will consider these in future versiaisSHEDS-Dietary. For example, promising
effort is described in three papers, authored t@am of researchers from government (NCI),
academic and other private institutions. Dodd.e806) provide a comprehensive review of
existing methods used to estimate long-term digtdake using cross-sectional data. Tooze
et.al. (2006) present a new method for estimabng{term intake of episodically consumed
foods using food frequency questions (FFQ). A féieduency question (FFQ) is: ‘How often
have you (respondent) consumed fish during the3tasgiays?’ Tooze et.al. (2006) present a two
stage model, with the first part (logistic regresgipredicting the probability of consuming a
particular food, and the second part (regressiologtransformed consumption amount)
predicting the amount of food consumed (>0). Etthird paper, Subar et.al. (2006) apply this
method to the Eating at America’s Table Study (EA@&a. The researchers noted that people
that consume foods more frequently (FFQ) also termbnsume greater amounts of that food per
occasion. Subar et.al. (2006) also provide a beieew of the development of the Food
Propensity Questionnaire, a set of FFQ that waednted in the 2003-2006 NHANES.

Findings in Givens et al., 2007 suggest a longitabdietary survey with minimum 6
consecutive days’ dietary consumption in each sé@sons would be adequate to represent an

3 Lu et.al., 2006a, p.260.
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individual 1 year dietary consumption pattern, angrove cross-sectional approach. “The
majority of the Panel is convinced that given tagadand analysis presented by the Agency, it is
not sufficient to construct the longitudinal digtaonsumption pattern based on the 8-day eating
occasions.” (p. 33 of 2007 SAP). Based on comnignthe 8/07 SAP, we prefer using the

D&A methodology rather than the 8-diary approacédus the SHEDS-Multimedia residential
module.

We will use real data as available to evaluatediuif$erent approaches and provide the basis to
decide which to use in future versions of SHEDSt®e We anticipate that these and other
research activities may help us to improve theesurapproach for modeling longitudinal
consumption, and to develop appropriate uncerta@ingtyses to characterize the pesticide dietary
exposure assessments. In the meantime, SHEDSHpietes the D&A approadior modeling
longitudinal food consumption. There are many pti# covariates and measures of diversity
across many subpopulations. The diet, health atrition literature contains a rich volume of
research, indicating that food consumption patterag vary by race, ethnicity, lifestyle

(activities and energy requirements) and socio-ecoa factors.

nn + +/”

The SHEDS-Dietary Eating Occasion analysis usedMdsamum Persisting Dose (PD) in
addition to Total Daily Exposure (for each pers@ydo calculate exposure per capita various
percentiles e.g. 99.9th. For the hypothetical tetew, the Total Daily Exposure is 2 ug/kg
(=sum of 2 exposure events), the Max PD is h@f&g (Max point on green line) based on a 2.5
hr half-life. The max PD reflects an approximategke bolus dose that produce same level of
peak inhibition as the two exposures.

Figure 2-4 depicts a hypothetical scenario in whaigierson obtains dietary exposures on two
eating occasions (e.g., ate 1 slice of watermeal@man and another at 5 pm). The red triangles
depict the amount of exposurer(d ai’kg bw) obtained on each eating occasion, whiegreen
line following the first exposure event depicts Bersisting Effect on cholinesterase inhibition.
For this example, the recovery half-life is assurttede 2.5 hours (150 minutes). Therefore, the
persisting effect from the first exposure eventglai’/kg bw) is approximately 25% of the peak
effect (0.25=(1/2)"(300/150)) when the second enpmgvent occurs 5 hours (300 minutes)
later.

The Persisting Dose reflects the combined effechfthe current exposure and the persisting
effects from recent exposures. The persisting dosiee second eating occasion amounts to 1.25
ny ai/kg bw (1.25=1+0.25), which is also the MaximBersisting Dose over this person-day.
The Maximum Persisting Dose is interpreted as anvatgnt (single) bolus dose that produces
the same peak level of inhibition as the exposateems from the simulated person-day. This
refinement has different effects for different egpe profiles. For the hypothetical scenario
above, it reduces TDE fromry /kg bw to 1.251g /kg bw. If those exposures occurred on a
single eating occasion (e.g., 2 slices at eithenrar 5 pm), then this refinement would not affect
that particular outcome (Max Persisting Doseg2kg bw=TDE). This analysis is based on
several important assumptions: (i) the time to pefédct is instantaneous (for convenience), (i)
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direct drinking water consumption is allocated obdixed events at fixed times, and (iii) the
subject (person) is healthy (no carry over effects)
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Figure 2-5 shows an example longitudinal dietagyasxire profile for one individual using
SHEDS-Dietary. The persisting dose (green lineg madeled from a cumulative data analysis
using the chemical half lives.

0+ , +$1 2 &! 3 0 2

It is a challenge to merge dietary and resideet@losures because the behavioral data are from
different sources. It is more complicated for theditudinal data. Bins by important variables are
used to merge the data; a balance between numkey efiriables and randomization has to be
controlled. Too many variables used to form biriseduce the randomization and too few
variables will increase randomization but incresseclassification between the dietary and
residential exposures. An average of 50 to 100 jiaitats in each bin is used as a criterion to
select the key variables to make sure that we bBagagh sample size in each bin for the
randomization. Key variables are age, gender, bagght, total caloric intake/METS, race,
season, weekday and region. The D & A method desgrabove (see bottom of figure 2-3) uses
total calories to turn the cross-sectional dieegosure into longitudinal food consumption
patterns, and uses waking time at home to turmetkidential cross-sectional activity patterns
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into longitudinal patterns. Then age, gender, bodight, total caloric intake/METS, race,
season, weekday and region can be used to fortirtlte match dietary and residential
exposures. A proposed methodology for matching fmmsumption and activity diaries, to
merge SHEDS-Multimedia dietary and residential mesluwill be presented to the EPA FIFRA
SAP in July, 2010. This methodology, describedrlatehis manual in the section entitled,
“Algorithm for Matching (Behavioral) Diaries: Fod@onsumption and Activity Patterns.” has
been tested through “soft linking” the two modublath a permethrin pesticide case study.

"( +4 + O JIr+

SHEDS-Dietary utilizes the CSFIl or NHANES dataagsess the timing and amounts of

indirect drinking water intake (i.e., through foods, infémtmula, ‘kool aid’, coffee, tea, etc.)
within a simulated person-day. The model contaatsoptions for allocatinglirect drinking

water consumption (i.e., through tap or bottledesjathroughout the day: (1) fixed approach, and
(2) empirical using the recent NHANES data or tlayd DWCS data described above. In the
fixed approach, SHEDS allocates the CSFIl respaistotal direct drinking water consumption
(mL/day) over 6 fixed occasions (6:00 am, 9:00 22100 noon, 3:00 pm, 6:00 pm, and 9:00 pm.
Preliminary analyses revealed that there is nafgignt difference between these two
approaches.

The second option uses the Bayer DWCS data toadéidbe total amount alirect drinking
water consumed throughout the simulated persortda@iis procedure involves the following
steps:5

1. Generate cohort (‘bins’) by gender, age, season

2. For each DWCS diary, calculate the percent of Tbtedct DW, by Occasion

3. For each CSFIl or NHANES diary, randomly selectegy@® DW diary from appropriate
‘bin’

4. Use Total Direct DW from CSFIl or NHANES and pertzge of DW from DWCS data
to calculate direct DW amount for each Eating Oisaétime of occasions also from
DWCS)

This second option cannot be applied for the ingaripopulation since the DWCS data did not
include infants. Although the DWCS study did nppear to have the same level of
sophistication as the CSFIl in its sampling desaur,expert view is that these data are useful to
model the timing of direct drinking water intake feveral reasons, including: (1) the marketing
firm, the NPD group, has extensive experience atitnong eating and drinking trends in the

US and Canada, (2) the design of the data colleatistrument, i.e. recording consumed amount
of water for each drinking event, led to betteth®dir recall, (3) reasonable response rates

4 The Panel noted: “In further development o tgpproach, EPA should make use of any reliableceaaf
relevant empirical data on daily patterns of dnirgkivater consumption; ideally adapted to the lil@psumption
behavior in specific regions or smaller areas efdbuntry.” P.59 of 63, SAP 2005b.

5 This algorithm can be modified for longitudimabdels, ‘binning’ respondents (persons), rathen tharies
(person-days) to retain the intrapersonal inforamationtained in these 7-day drinking water diaries.
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(>30%), and the relatively high percent of respartsi¢hat completed 7 day diaries (82%), and
(4) the 7 day study period reduces the need to hiodapersonal variability over this duration.

An alternative method being considered for usirggdhinking water data is a two step approach
for each simulated person: (1) randomly draw onief30 years, and (2) apply the predicted
concentration for January'bf that selected year to calculate exposure fgr Dand so on, with
predicted concentration on Decembet Bging applied to calculate exposure for Day 36Bis
general approach, available in other aggregate Isda&s the advantage of retaining
autocorrelation present in the predicted drinkirader concentration data.

Figures 2-6 and 2-7, taken from DWCS report (Figlr@nd 6, respectively), indicate that many
respondents consume direct drinking water on maltycasions, and at all times throughout the
day. This provides some support for using a simmeeling assumption (e.g., equal amounts
allocated across 5 or 6 occasions). Those distoirsido not reflect variations in drinking water
intake across individuals. The report suggeststhiese data may be used to model drinking
water exposures, by eating occasion:

“It may be possible, using the information collettey the DWCS to “allocate” the total
daily water consumption amount reported in the @8#b various drinking occasions.
Specifically, if each subject in the CSFIl surveaswandomly matched to subjects in the
DWCS, based on survey season, region, age, geantétptal amount of drinking water
consumed per day, then the total amount reportetthdtyCSFIl participant can be allocated
to the same number of drinking occasions as thegerted by the matching DWCS
participant. Similarly, the proportion of the tdtdaily water consumption allocated to each
of these drinking occasions can be assumed toniéasito that reported by the matching
DWCS participant. This approach would then allovess than 24-hour assessment of both
food and drinking water (aggregate assessment foesticide.™

® Barraj, L.M. et.al. (2004), ponent®, Inc.; National Product Database (NPD) @rop.17.
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Table 2-5 provides the total number of drinking evatiaries in the DWCS by gender, age and
season. Infants less than one year old were nhtded in this survey. The two adult bins (20-
49 yrs, 50+ yrs) contain a large number of diasiese they encompass a greater range of years.
The DWCS contains a relatively large number ofkirig water diaries for most of the children’s
‘bins’; the one-year old female, summer bin hasféwveest number of diaries (N=29).
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Age Graup Gender Sea.son Subtotal Subtotal

Winter Summer Age-Season Age Group
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M 6,666 4,891 11,557

Total F 9,107 6,438 15,635 27192

The DWCS raw data files did not include samplingghies to make projections at the per capita
level. The report noted that the estimated dideictking water intakes reported by the DWCS
respondents were slightly higher than the 1994-X298Bll respondents. For example, the
overall mean intake of DWCS respondents was 37@a9440.6 oz/day =summer, 35.7 oz/day
=winter)’, while the CSFIl respondents reported 29.6 0z(8ay4 oz/day =summer, 27.8 oz/day
=winter)®° While no formal statistical tests were presentied report noted that this difference
may be due to the fact that “the DWCS providedipigdnts with a time grid to report their
water consumption, thus potentially helping themeeber all their water consumption
occasions, in contrast to the CSFIl general 24 hutai consumption recall questiotf.”

In future versions, we plan to utilize the reportiede of water consumption data from recent
NHANES.

71117.9 ml/day, 1200.7 ml/day, 1055.8 ml/day retpely
8 785.4 ml/day, 958.2 ml/day, 822.1 ml/day respedyi
° Barraj, L.M. et.al. (2004), Table 7, p. 26. Fig8rprovides some estimates, by age groups.

(p.31)
19 Barraj, L.M. et.al. (2004), p.16
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Agency risk assessors typically specify 1,000 tters per diary during a DEEM-FCID
simulation, providing for about 41 million persoaydsimulations (=41,214 person-day diaries X
1000 iterations/diary). Except for extremely uralstircumstances, this number of iterations has
provided very stable results at the per capitatB@@rcentile for all subpopulations (i.e., not
much ‘simulation’ or ‘random seed’ uncertainty)im8arly, users can specify any number of
iterations per diary using SHEDS-Dietary (crosgiseal). The sensitivity analyses presented in
this section were based on only 150 iterations hjgpeared to be sufficient to verify results
with DEEM-FCID. We specified fewer iterations snSHEDS-Dietary (for cross-sectional
analyses) retains all of the output from each siteual person-day (creating 4 GB in output with
150 iterations), allowing sensitivity analyses todmnducted much more efficiently.

ORD/NERL has not developed recommended numberrsbpeyears for SHEDS-Dietary.

"7 2 0

The most difficult part of conducting sensitivityadyses is in the problem formulation: defining

a particular issue of concern, evaluating the abl data inputs, developing method(s) to assess
how sensitive the results are to that concern caiagacterizing the degree to which that analysis
addresses that concern. More details are providknhvian the section, “Sensitivity Analyses
Methods.”

"8 # 0

Uncertainty analyses may help ascertain the relatportance of the data inputs. There is
uncertainty in estimates of a total single-day expe from various factors, including: limited
food consumption data (CSFII), food recipes (FCE¥gilable residue data (e.g., PDP
monitoring, crop translations), and processingdict This preliminary list of factors expands
with longitudinal measures and the use of PBPK risod€o date, OPP has not utilized formal
uncertainty analyses in its pesticide dietary eypopassessments.

+ $ ,

SHEDS-Dietary can be used to estimate populatistmiblutions (and select percentiles of
interest such as 599", 99.9" of aggregate or cumulative dietary exposures,gamérate the
following output results:

CDFs of dietary exposures for populations of idegeincluding food and water
separate or combined, as well as by eating occasion

Bar charts, pie charts, and summary tables shogangibution to total exposure
(e.g., 99.9-100th), by food, commodity, or commpditemical (for multi-
chemicals);

Summary statistics of dietary (food, drinking watarsum) exposure by age
group and/or gender (including females 13-49 yd3;@nd

Eating occasion, sensitivity, and uncertainty asedyto identify key factors.
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A summary of various SHEDS-Dietary outputs and ysed is given in Table 2-6.

II'5" &% 2 "

Variable/Modeling | Description

User-only Analysis

Deterministic calculation of exposures among petipdé¢ consume a

Eaters-only Report treated commodity or food

Contribution Analysis

Shares of Total Exposure, by Current reports provide shares of total exposu@@gd( — 100"
Commaodity, Food or Diaries percentiles), by commodity or by food

Shares of Total Exposure, by
Chemical — Commaodity, Food of
Diaries

For cumulative exposure assessments, SHEDS kesahsaf
residues, by chemical (i.e., not used RPF combiesidue)

(i) ‘Exceeders’ or shares of total person-daysq99. 100"
percentiles), by commodity. (ii) focus on diaripsrcent of
simulations exceeding target

Shares of Total Person-days, by
Commodity, Food or Diaries

Sensitivity Analysis

Consumption ‘Outliers’ Effect of Diaries with Reped High Amounts Consumed

Effect of the Estimated Percent of Samples Treg@tadf Level Of

Percent Samples Treated Detection (Half-LOD) used for monitoring data)

Effect of Annual Fluctuations in Percent Crop Teshfassuming all

Percent Crop Treated other factors constant)

Processing Factors Effect of Estimated Procedsaugors

Uncertainty Analysis

Effect of Different Factors for Developing ‘Cohdrts ‘Bins’ for

Uncertainty - Cohorts Food Diaries

Effect of using a Subsample of the Food diariesResidue data on

Uncertainty — Subsamples per capita estimates (200 person-years)

Uncertainty — Subsamples of

residues, by commodity Residue by commodity

Uncertainty — Models Comparing Results Across Atidéls

The SHEDS-Dietary module retains detailed persoetleutputs for each dietary exposure
assessment. Presently, the SHEDS-Dietary Crodse8alcsimulations retain more detailed
information than the SHEDS-Dietary Longitudinal siations. For the Cross-Sectional
simulation, the SHEDS-Dietary module retains dethihformation for each exposure event,
including food diary ID, time of eating occasionptl item, FCID commodity (RAC-FF), amount
consumed (g), residue (ppm), and exposure (ugsaice the CSFIl and NHANES\WWEIA
surveys contain numerous food diaries, a CrossiBedtsimulation specifying 200 iterations for
each of the 40,214 CSFIl diaries will generate 8,8@0 person-day outcomes (=40214x200),
which may take up to 10 GB of hard disk space.fakbditate data processing, SHEDS-Dietary
splits the outputs into multiple data tables. Ha éxample above, the outputs from a SHEDS-
Dietary cross-sectional simulation would be stdi26@ separate tables in the SAS library
‘Output’, and the filenames for each table willrtaith the prefix as provided by the User.

The outputs from a SHEDS-Dietary longitudinal siatidn are currently stored in a single table
in the SAS library ‘OLONG’, with the filename stang with the prefix as provided by the User
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followed by the suffix (long) (e.g., SAS data talde case Study #3: Olong.Cperm_long). The
results retained in the longitudinal simulationlute: person ID, date, food diary ID, total
calorie, time of eating occasion and exposure {(ugThe data fields and formats for the cross-
sectional and longitudinal simulations are providethe SHEDS-Dietary User Guide, Appendix
3.1 (cross-sectional simulations), and Appendix(Rgitudinal simulations). Since commodity
level details are not retained in the longitudisiatulation, the contribution analyses is limited
compared to ‘cross-sectional’ simulations. {We wilinsider outputting detailed results in future
versions; perhaps saving the results for each raddedrson in a separate table (file) to ensure
that the data tables are not too large for dategssing.}

There are several advantages and disadvantagetawiing all of the detailed data. The primary
disadvantage is that a single simulation may takea oonsiderable amount of hard disk space
(8+ GB); if users need to perform simulations farltiple chemicals, then this may pose a
significant issue (e.g., the hard disk on the Agénlaptops have 80 GB capacity). Another
disadvantage is that appending data to the oujpigs may increase the processing time
considerably as those tables become increasingjgra If the user is only interested in knowing
aggregate daily exposure at some per capita pdecéng., 99.9), then processing time can be
shortened since the model only needs to retaihdatly exposure for each simulated day.

The advantages for retaining the detailed outpurtedch simulated person-day, include: (i)
guerying/viewing detailed outputs for select diar@ad/or persons, (ii) perform alternative
methods for assessing contributions (exceedei¥agilitate sensitivity analyses (‘what-if’
scenarios), (iv) conduct sensitivity analyses {etg), (v) perform ‘eating occasions’ analyses for
multi-chemical assessments, (vi) pass on dietgppsures by time of day to PBPK model.

We describe two of these advantages below. Hilistimportant to recognize that the user can
guery these output tables to calculate aggregatargiexposures at various per capita
percentiles, as provided in the “Exposure and %APB@mmary Table”. Suppose the user
wants to know how aggregate exposure at the pétace®.9" percentile changes if we removed
that pesticide’s use on lettuce. Then, the useldosither zero out residues for lettuce and rerun
the simulation, or zero out the exposures fromsthrulation and recalculate the 99.9

percentile. The first option will take considemlpirocessing time (especially in a cumulative
setting) and add simulation uncertainty since a sewof residues is randomly selected for each
person-day-food. The latter option is more effitisince the model simply recalculates the
99.9" percentile with the existing results - zeroing exposures from that particular commodity.
The user can submit a batch job to perform sudtatvif’ scenarios for various combinations of
foods (e.g., removing only lettuce, or removingyoapbples, or removing apples+lettuce, etc.).

The second example, described in further belowerforming sensitivity analyses to assess
potential uncertainties (measurement error) reggreeported food consumption. Nako and Xue
(2006) identified several food consumption diatlest reported high drinking water intake, and
wanted to assess the effects of those diaries thygoper capita 99"9percentile. The user needs
to first identify which food consumption diarieseaf concern and what adjustments are to be
made (e.g., drop diary altogether or adjust thented consumption). Once that determination is
made, the simulated exposures can be adjusteddingly; and the per capita 99 percentile
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recalculated from the adjusted outcomes. SincelEHBietary retains the outcomes, the user
can perform such sensitivity analyses without ‘chiag’ the underlying food consumption data
base. The user needs to use supplemental SASMadeos) to conduct such analyses since the
Agency had difficulty incorporating these optionsoi the SHEDS-Dietary version 1.0 GUI.

- * b

( 2 0

The following sensitivity analyses have been rungiSHEDS-Dietary v1.:
key data to determine their impact, such as usi@glC/s. NHANES/WWEIA
consumption data or PDP vs. TDS residue data;
different algorithms to assess the impact suchlasating drinking water consumption
equally over 6 fixed eating occasions vs. usingrmiation from the Bayer Drinking
Water Study (discussed below);
different residue sampling algorithms such asiglin non-detects with zero, half
detection limit, detection limit);
outliers — impact of keeping or removing “outliei the key exposure output
parameters (e.g., exposure); and
mitigation -- assessing impact of removing onea group of RACs (e.g. delete one
commodity such as a particular fruit to see theaotpn the average and high exposure
percentile).

The sections below show results of sensitivity gsed on food and drinking water consumption
outliers. Other analyses are illustrated in treecgtudies of Chapter 3.

( 2 0 9

A component of the Agency'’s risk characterizati®ona “Evaluate the tails of the food exposure

distribution to verify that unusual consumptiontpats are not inappropriately impacting on the

results of the assessment.1dentifying ‘unusual’ consumption patterns reqsinespection of

the food diaries. If the amounts consumed areincgasonably high, then no further analyses is
required. As the panel noted,

“The CSFII is designed to be representative of dpifation as a whole. Hence the
“tails” of the distribution are still part of the @tribution and, therefore, cannot be said
to impact the results of the assessment inapproyia™

If consumption values are so unusual so as to lmtegquestion the accuracy of the data (e.qg.,
measurement or data entry error), then quantitatraat-if’ analyses may be appropriate. A
guestion for the exposure modeler is how sensétreeexposures at the upper per capita

M EPA SAP, 2005, p.187.
12 SAP minutes, 2005, p.36.
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percentiles to one or a few such data records?opba source coding of SHEDS-Dietary
enables the user to perform such analysis in &a@uid cost-effective manner.

Figure 2-8 presents a Box and Whisker plot of motansumption among children ages 1 and 2
years old. The amount of potatoes consumed bg 8fdl diary highlighted earlier (Table 2-1;
ID=28517-2-2) is about twice as high as the sedoglest eater in this age group. This amount
appears to be an outlier when focusing on onlgdrpotato consumption, but not so much the
case when considering potato consumption in ottt forms (e.g., boiled). As absolute
amount consumed, this amount does not appearitofausible: a 1 yr old, 13 kg boy eating
300 grams of home fries on two occasions. Butresickerable amount of resources may be
expended to defend that assessment, and usingitBB S Dietary model, we can determine that
the per capita estimates are fairly robust to dhis diary. In particular, if we either (i) removed
this ‘outlier’ from the Monte-Carlo simulations, @) adjusted the amount consumed to lower
level (e.g., second highest amount), the per castianates at the 99 percentile will not

change considerably.
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As in the case of various food items, there areesbigh reported drinking water consumption
amounts in the CSFIl. Figure 2-9 presents a Box+Cansformation of drinking water
consumption (ml/kg bw/day) for all infants in th&Ell data base. The two highest amounts are
located in the upper right hand corner — deviatibgve the otherwise linear pattern established
by the majority of the remaining reported consummi These two values are, respectively,
52% and 41% higher on a ml/kg bw basis than the (tleixd) highest reported consumption
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value. An inspection of the food diaries indictitat a set amount of formula was reportedly
prepared and consumed by these two infants onpleuticcasions throughout the day. The first
infant diary (28892-2-1) was for a newborn (O ntoolkd) weighing 3.2 kg, that reportedly
consumed a total of 1,997 ml that day (1819 mLrexti 117 direct), or about 624 mi/kg bw/day.

An inspection of the CSFII diary indicated thattimfant consumed a total of 8 oz of formula (6
ounces consumed directly + 2 0z used to prepatedug of dry rice cereal) at 8:00 am, 9:30, 11,
1:30, 4:30, 6:00, 10 and 11:30 pm; an additionaz 4f formula alone was prepared/consumed at
1:00 am. The second infant-dairy (26837-3-2) wase@month old that weighed 3.6 kg, and
consuming a total of 2,044 ml that day (1,926 ndinect, 118 direct), or about 568 ml/kg

bw/day. An inspection of this second diary indéctitat that infant consumed 8 oz of formula on
nine different occasions throughout the day, af 4, 6:00 am, 8:00 am, 10:00 am, 12:00 pm,
2:00 pm, 6:00 pm, 8:00 pm and 10:00 pm. Thesedmviking water intake amounts appear to

be ‘outliers’ based on the available referenced,ahbrief review of the pediatric literature (e.g.,
U.S. EPA, 2008).
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Analyses of the SHEDS-Dietary simulated outputtiierinfant subpopulation indicated that two
food diaries constituted about 70% of all high deted outputs in the top 0.1% of simulated
person-days. Again, the question of concern wasdensitive are the estimates at the upper
percentiles to the drinking water intakes repoftedhese two respondents. Agency staff used
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(cross-sectionalpHEDS-dietary to conduct two ‘what-if’ scenarios) @rop these two diaries
from the Monte Carlo simulation, and (2) reducerté@orted amounts consumed by 50 percent.
Neither of these resulted in marked changes irstienated exposures at the per capita™9.9
percentile. The sensitivity analyses for the potater and these high infant water intake
diaries,showed similar insensitivities to theselliets.” The Agency previously noted the
robustness of the results to residue outliers:

“...it is often not the extreme upper tail of a residistribution which is responsible for driving
the 99.9' or 99" percentile exposure levels, but rather a combaratf reasonable (but high
end) consumption and reasonable (but high endiiteslevels of one or two frequently
consumed agricultural commoditiesuS EPA (1999), pp. 21-22.

While that quote referred tesidue ‘outliers’, the two case studies above suggestisatsimilar
level of robustness appears to hold for consumpaotiiers’ as well. While such analyses
cannot be performed if the consumption diariediaesl in the code, the open source code of
SHEDS-dietary provides agency modelers with conepecess to all of the underlying data and
algorithms. This feature enables the Agency tanttadively address other questions that risk
managers may have as PBPK models are used to d#stasy risks to pesticides and other
chemicals.

Examples of other sensitivity analyses are present€hapter 3.

) # 0

SHEDS-Dietary has a simple bootstrapping metho@¢doducting uncertainty analyses -
utilizing only a subset of the consumption anddesidata inputs. This proposed method is
designed to gain some insight about ‘How much bettaild our estimates be if we hatbre
data?’, by conducting the uncertainty analyseténather direction ‘How far off will our
estimates go if we used only a subset of the copsamand/or residue data?’.

The SHEDS-Dietary bootstrap procedure to conducerainty analysis entails the following:

1) Randomly draw certain percentage (e.g., 50%) cfgeday from CSFII data or/and
randomly draw certain percentage (e.g., 50%) oflvesdata from pollutant residue files
by raw commodity and food form. Run 100 timesvariability.

2) Repeat step 1 many times, e.g., 200 times.

3) Quantify variability from each run.

4) Conduct uncertainty analyses from different rung.(00 times). 200 80 95" and 94'
values can be acquired respectively. The ratics8f\&. 8" percentile of a given
percentile can be used to evaluate the uncertdihty bigger the uncertainty ratio, the
bigger uncertainty produced by subsets of dietadyrasidue data.

5) Obtain important sources contributing to the totadertainty (e.g., structure, scenario).
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To check whether there are enough data for consamand residue data sources, and which
data set was relatively more important for exposuneertainty analyses applying statistical
bootstrapping of certain percentages of both dzttg svere conducted with SHEDS-Dietary for
permethrin, as shown in the table and figure below.

) # 0 , !

This section describes SHEDS-Dietary uncertainghaes focusing on the selection of food
consumption diaries. It includes uncertainty asedyfor the permethrin application (assessing
impact of residues vs. consumption, and sample;saesessing impact of number of exposure
days before dose results stable).

Figure 2-10 shows the uncertainty for 3 CDFs fastbtyap sampling of 50% of residues and
20%, 50%, 80% of food consumption data. The CDthef50% of residues and 20% of
consumption data has the biggest uncertaintyrekgnts uncertainty results for daily dietary cis-
permethrin exposure, based on bootstrapping 208stiffhe ratio of 97"5percentile to the 2'5
percentile (95% confidence interval) is 15.07/483=In the same way, we can calculate those
ratios for other schemes of bootstraps to evalvhtg are the major factors contributing the
overall uncertainty.

Q@2 """" Y% 2 % M
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Table 2-7 shows results of uncertainty analysdse green highlighted cell (3.3) reflects the
95"/5™ percentile ratio for an uncertainty run that usetisets: 50% cis-permethrin residue by
RAC, and 20% of NHANES dietary consumption data¥d year-olds. The NHANES food
consumption data base contains a total of 6,20d fiaries, and only a subset of those diaries
are selected for each simulation (6204*0.2=12419.réh this 100 times, for a sample size of
124,100 for variability for the same subset. Wenthan another 100 times for uncertainty for the
different subsets with the same bootstrap sampétey yielding sample size of 12,410,000. The
99" percentile was calculated from that simulatiord #re process was repeated 100 times,
producing one hundred estimates of aggregate erpasthe per capita 99th percentiles. From
these 100 values we found the 97 &nd 2.5" percentiles; their ratios yield the uncertaintyaa
3.3 (15.07/4.63, see Figure 2-10). The bigger tieedtainty ratio, the bigger uncertainty
produced by subsets of dietary and residue data.

H+ 1 % """ "2 2 % ™

Ratio of 97.5th v.s. 2.5th percentile of uncertaigt99th CDFs by various percentage of bootstrap

dietary sampling Bootstrap sampling percentage for cis-permethsidue data
percer 10 20 30 40 50 60 70 80 90
10 5.3 32 36 34 47 35 43 46 33
20 238 25 34 25 33 31 35 25 26
30 25 23 23 28 25 25 2.7 2.3 26
40 19 21 22 21 21 20 20 22 20
50 23 24 1.7 22 23 23 20 1.9 1.9
60 20 21 20 18 19 18 1.6 22 22
70 18 19 18 21 19 22 1.9 20 20
80 21 19 18 18 18 17 1.8 1.7 19
90 17 20 18 18 17 20 20 1.9 18
1 2

Three types of quality assurance have been cordluste SHEDS-Dietary. First, ORD and
contractor Alion followed the SHEDS QAPP (US EPA]1R) when developing the code and
GUI. Second, ORD evaluated the model for ArseXige(et al., 2010). Third, OPP provided an
independent review, and conducted a comparisoasofits to the DEEM-FCID model (model-
to-model evaluation), as described below.
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This section compares SHEDS-Dietary and DEEM-FCTRble 2-8 presents the per capita
estimates for chemical ‘ABC’ at upper percentil@s"( 99", 99.9") used by the Agency in acute
dietary risk assessments. Figure 2-11 presentsetheapita estimates for chemical ‘ABC’ at the
99.9" percentile for nine subpopulations for 17 sepadiaiteking water scenarios. The
differences should reflect only simulation uncertai(i.e., differences due to different draws of
random numbers) since the models both rely upolC®iell sampling design.

The Panel previously noted the importance of respgdifferences due to model uncertaifity.
SHEDS-Dietary was developed to evaluate the increaheffects of specific modeling
assumptions. This tool can also help explore adseres, such as the sensitivity analyses as
discussed above, as well as other types of andlyaesay be requested as the Agency
progresses toward using PBPK models.

We briefly describe the DEEM-FCID model since thgeAcy has generally relied upon this
model to conduct dietary risk assessments undeA-@®r each food diary, DEEM-FCID
applies a Monte-Carlo simulation to calculate toly exposure, as depicted by Equation'f1).
DEEM-FCID conducts a fixed number of ‘iterationg’each food diary, allowing the user to
specify the number of iterations per diary. Agerisl¢ assessors typically run DEEM-FCID with
1,000 iterations per diary.DEEM-FCID keeps track of the total daily exposuredach
simulated person-day, and applies the correspor@8igjl survey weights to project the
simulated person-days to a per capita level. dfuber specifies only one iteration, then the per
capita percentiles would reflect interpersonalafaitity — variation in exposures across the
subpopulation due to differences in food consunmptith multiple iterations are specified,
DEEM-FCID treats each modeled person-day as sep@natependent) simulation. The per
capita estimates reflect both intrapersonal vditgla@nd interpersonal variability. Note that the
purpose of these Monte-Carlo simulations is to iobda estimate of a high-end aggregate total
daily exposure.

Table 2-8 presents DEEM-FCID and SHEDS-Dietarynesties (cross-sectional) of total daily
exposure at selected percentiles for chemical ABC9 subpopulation groups. Table 2-8
suggests that these two models produce similaltsestross these subpopulations for this
particular set of anticipated (food) residues. I@kn often have higher exposures than adults

13 US EPA — FIFRA SAP Minutes 2004-04, p. 24.
http://www.epa.gov/oscpmont/sap/meetings/2004/iddextapril

14 The Monte Carlo procedure draws a residue foln &AC-FF. While a particular commodity (Potatdyer
w/peel) may be used in multiple foods, the cookimgthod may differ, and thus, it will have a differéood form.
The food form for potatoes used in ‘White potatomie fries w/Lard’ is ‘cooked-fresh-fried’ (ff=218ee legend in
Table 1). This particular diary may have containduer foods with ‘Potato, tuber w/peel’ - somentifich may
have the same food forms, e.g., 71411000- 10070hi#&Npotato skins, with adhering flesh, fried, witieese and
bacon’, while others have different food forms,.£7d.603010="Potato salad’, 71101110="Baked potalicthe
cooking method is the same (e.qg., “Pork fat’ oartl’ used to fry eggs and home fries), then theesasidue is
applied to all those consumption amounts (‘homesfri‘White potato skins’, etc.). But if the fodarms are
different (e.g., ‘Potato salad’ is boiled, ff=21Baked potato’, ff=211), then a different residsdridependently
drawn and applied for those food forms in the td&ily simulation.

15 Risk assessors may increase this to 5,000 az iations if the results are sensitive at thiel.
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(mg ai’kg bw/day) at these upper per capita peilesrdue to higher intakes of many foods as a
percent of their bodyweight.
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DEEM-FCID results (1 simulation w/1000 iterations)

95" Pctile 99" Pctile 99.9 Pctile
Subpopulation (mg/kg/day) (mg/kg/day) (mg/kg/day)
U.S. General 0.00209 0.01076 0.04873
All Infants (< 1 yr) 0.00402 0.01661 0.05982
Children 1-2 yrs old 0.00931 0.03261 0.12403
Children 3-5 yrs old 0.00688 0.02717 0.10643
Children 6-12 yrs old 0.00328 0.01515 0.06653
Children 13-19 yrs old 0.00137 0.00762 0.03755
Adults 20-49 yrs old 0.00130 0.00714 0.03410
Adults 50+ yrs 0.00178 0.00879 0.03748
Females 13-49 yrs old 0.00139 0.00792 0.03780

SHEDS-Dietary results (150 iterations)

95" Pctile 99" Pctile 99.9 Pctile
Subpopulation (mg/kg/day) (mg/kg/day) (mg/kg/day)
U.S. General 0.0021 0.0108 0.0476
All Infants (< 1 yr) 0.0037 0.0158 0.0556
Children 1-2 yrs old 0.0094 0.0326 0.1228
Children 3-5 yrs old 0.0070 0.0272 0.1041
Children 6-12 yrs old 0.0034 0.0154 0.0697
Children 13-19 yrs old 0.0014 0.0078 0.0361
Adults 20-49 yrs old 0.0013 0.0071 0.0323
Adults 50+ yrs 0.0018 0.0086 0.0365
Females 13-49 yrs old 0.0014 0.0079 0.0358

Ratio (DEEM-FCID/SHEDS)

95" Pctile 99" Pctile 99.9 Pctile
Subpopulation (mg/kg/day) (mg/kg/day) (mg/kg/day)
U.S. General 0.99 1.00 1.02
All Infants (< 1 yr) 1.09 1.05 1.07
Children 1-2 yrs old 0.99 1.00 1.01
Children 3-5 yrs old 0.97 0.99 1.02
Children 6-12 yrs old 0.97 0.98 0.95
Children 13-19 yrs old 0.97 0.97 1.03
Adults 20-49 yrs old 0.99 1.00 1.05
Adults 50+ yrs 1.01 1.02 1.02
Females 13-49 yrs old 0.98 0.99 1.05

In addition to comparing exposures in Table 2-8 campared SHEDS-Dietary and DEEM
results for contribution of exposure from major coodities. Table 2-9 shows that these results
are also very similar.
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Percentac

comcode Commodities DEEM SHEDS
95003590 Strawberry 34.5 40.3
12002600 Peach 13.0 8.9
95001750 Grape 10.8 131
11000070 Apple, fruit with peel 7.6 8.2
95003600 Strawberry, juice 7.2 6.5
12002300 Nectarine 3.7 4.5
11000100 Apple, juice 3.3 2.9
12002850 Plum 2.7 0.8
95001780 Grape, raisin 2.6 2.7
12002880 Plum, prune, juice 2.1 3.0
12002620 Peach juice 14 0.0
12000130 Apricot, dried 1.2 1.2
4013550 Spinach 11 0.3
95001760 Grape, juice 0.9 15
9013990 Watermelon 0.8 1.2
9023560 Squash, summer 0.8 0.1
9021350 Cucumber 0.7 0.0
11002660 Pear 0.6 0.4

Figure 2-11 plots the DEEM-FCID and (cross-sectip8&lEDS-Dietary estimates of exposure
at the per capita 99"9or 17 different drinking water scenarios, for@eagroups. This plot
suggests that these two models produce similaltsestross many different drinking water
scenarios, because the correlation is near 1glimear 45 degree angle). For any particular
scenario, the infant subpopulation (pink) has tighdst exposures (mg ai’kg bw/day) since
infants generally have higher drinking water intalas a percent of their bodyweight (mL/kg
bw/day).
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ORD and OPP scientists collaborated to refine,uatal(compare with DEEM model), and apply
the SHEDS dietary module (food and drinking water)a number of analyses (food and
drinking water scenarios, half-life and eating @toa sensitivity analyses, longitudinal
simulations with half-life and eating occasion gsak, examining various ways of sampling
residues for sensitivity analyses, analyses fotrdmution by crops and chemicals to identify key
risk contributors and help assess risk mitigaticenarios) to refine OPP's risk assessments and
inform their risk management decisions for thedwiing:

Aldicarb RED (2006)

development/testing of eating occasion analyses

allowed comparison to DEEM-based analyses

applied Bayer DWCS data (little difference) foretdit water intake
Carbaryl (2007)

explored longitudinal (multi-day) eating occasioralyses (DW-infants, 5+ hrs)
N-Methyl Carbamate CRA (2007)

supported contention that not significantly ovareating risk by not accounting for

recovery (food-only)

maximum exposure, by eating occasion, providesdsest scenario for recovery
Organophosphates CRA (2009-2011)

updating the 2006 OP Cumulative Risk Assessment

SHEDS longitudinal eating occasion analysis usembtwsider persisting effects (carry-

over) on AChE inhibition using chemical-specificogery (half-life) rates

SHEDS contribution analyses allowed assessingtsftganitigation options on the

population 99.t percentile

EPA/ORD scientists have also applied SHEDS-Dietar&s and MeHg case studies for research
purposes, to answer questions about ranges of gtopukexposures, major food contributors,
differences in exposures for vulnerable populatiamsl evaluation of modeled estimates against
duplicate food and biomarker data.

' 3 4

Dietary exposure from food to toxic inorganic ais€As) in the general US population has not
been well studied. This SHEDS-Dietary research tiii@s dietary As exposure, and analyzes
the major contributors to total As and iAs. Anatbejective was to compare model predictions
to observed data using both duplicate diet data(aifter linkage with a PBPK model) biomarker
data.
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Probabilistic exposure modeling for dietary As wasducted with the SHEDS-Dietary model,
using NHANES/WWEIA consumption data and TDS residata. The dose modeling was
conducted by combining the SHEDS-Dietary model witbhysiologically-based
pharmacokinetic (PBPK) model in EOHSI's MENTOR-3RBtem (Xue et al., 2010). Model
evaluation was conducted via comparing exposuredasd modeling predictions against
NHEXAS duplicate diet data and NHANES biomarker swgaments, respectively, for the same
individuals.

The Xue et al., 2018HEDS-Dietary publication revealed that toxic iremg As (iIAs) exposure
from food is more important than drinking water tbe U.S.. The major food contributors to iAs
exposure were vegetables, fruit juices, and fruitg; beer and wine; and flour, corn, and wheat
(Figure 3-1). The major food contributor for tA$pesure is fish (contributing 60% of exposure;
Figure 3-2). The mean modeled tAs exposure fromd fs 0.381g /kg/day, ~14 times higher
than the mean As exposures from the drinking watée mean iAs exposure from food is 0.05
ny /kg/day (1.961g /day), ~2 times higher than the mean iAs expasiren the drinking water.
Approximately 10% of tAs exposure from foods is tbeic iAs form. SHEDS modeled
exposure and dose estimates matched well withupkcdte diet data and measured As
biomarkers (Figures 3-3 and 3-4). This model eatadun effort provides more confidence in the
exposure assessment tools used, including SHED®+Rie

Some key results are shown in Figures 3-1 to 3-4:
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Comparison of total As in Urine (ug/L) from NHANEf&ta and PBPK model

N Mean Std 50th 25th 75th 95th

PBPK model 2355 18.32 46.86 8.1 4.7 16.1 58.9

Measured conc. 2355 18.06 42.12 4.9 25 14.6 74.8
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SHEDS-Dietary has a simple bootstrapping method@¢doducting uncertainty analyses -
utilizing only a subset of the consumption anddesidata inputs. The SHEDS-Dietary
bootstrap procedure applied to Arsenic involvedftlewing steps:

1) Randomly draw certain percentage (1/20 or 5%) sqeday from CSFIl data or/and
randomly draw certain percentage (1/4 or 25%) sitkee data from pollutant residue
files by raw commodity and food form,

2) Perform Monte Carlo simulations (e.g., 100 itenasiper diary using cross-sectional
method)

3) Get population based statistic from each run (eggregate exposure at per capitd 99
percentile)

4) Repeat the steps 1-3 many times, say 200 times

5) Conduct uncertainty analyses from different rung.(&ill have 200 estimates of the level
of aggregate exposure at the per capity 98" and 99' percentiles, respectively). For
each population based statistics (e.g., per cagftpercentile), the ratio of 95vs. 8"
percentile can be used to evaluate the uncertdihty bigger the uncertainty ratio, the
bigger uncertainty produced by subsets of dietadyrasidue data.

Figure 3-5 shows the uncertainty for 3 selectederdiles (see Xue et al., 2006 for details on this
type of uncertainty analysis), and that 99th peiiteehas the biggest uncertainty. It presents
uncertainty results for daily dietary arsenic expesbased on bootstrapping 1/30 of CSFII
diaries 200 times and 1/8 of the residues. Fon eaccentile, such as 8090" or 95", there are
200 values, from which the 9%nd %' percentile were acquired and its ratio was catedla

The ratio of the 95to 5" percentile is 1.19 for S0percentile; 1.93 and 3.28 for'9and 9¢'
percentile respectively. We can see that therelaively little uncertainty regarding the estimate
of the 50" percentile as compared to higher percentiles meispect to the amount of residue and
consumption data used in the exposure assessenthe arsenic case study, we performed
such bootstrap procedure and calculaty®5ratios for various subsets of consumption and
residue data to evaluate the relative contributiorthe overall uncertainty.
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The MeHg case study examines exposures for vulleepaipulations. Asians, Native
Americans, and Pacific Islanders (A/N/P) have shbvgher levels of MeHg in previous
NHANES; reasons have not been well studied. Thectiges of this research are to examine
dietary exposures to MeHg through fish consumpitiodifferent racial/ethnic groups, and
extend previous NHANES blood level analyses.

Probabilistic exposure modeling for dietary MeHgsweanducted with SHEDS-Dietary, using
NHANES/WWEIA fish consumption data and FDA TDS figsidue data. MeHg exposures by
race/ethnicity, age group, and food type were aealyFor Asians, Native Americans, and
Pacific Islanders, major contributors for MeHg aurea, fresh water fish—other, seawater fish—
other. Statistical analyses of blood MeHg levsaisdre/ethnicity from 1999-2006 are being
compared against previous published results foe1882 data (6 times larger sample size).
Exposure estimates for MeHg in fish can explaintigh level of MeHg in blood for populations
with higher fish consumption.
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Results are shown in Figures 3-6 and 3-7, and $&bitkto 3-2. For all age groups, the A/N/P
group has higher mean dietary MeHg exposures ti@géneral population (Figure 3-6 and
Table 3-1). 1-2 year-olds and A/N/P have the hstjinatio of SHEDS modeled MeHg exposure
and NHANES MeHg blood levels. For A/N/P, 5 majontributors for MeHg are tuna, fresh
water fish—other, seawater fish—other, salmon,aatfish (Figure 3-7). SHEDS exposure
predictions correlate well with NHANES blood biorker levels in terms of age, gender, and
ethnicity. Percentage of MeHg blood levels higtmant critical health-based concentrations is
higher (up to 8x) for A/N/P compared to other rdeihnic groups (Table 3-2).
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ug/day ug/kg/day
Ethnicity Age N Mean fold Std P95 P99 Mean fold Std P95 P99
ANP 0<1 170 0.1 1.7 64 0.0 49 0.01 1.6 6 0.00 0.53
1to <2 89 1.7 5.7 804 7.3 42.0 0.13 4.9 62 0.62 3.09
210 <3 96 0.9 1.7 307 8.2 149 0.07 1.9 23 054 1.13
3to <6 200 0.8 1.1 542 3.3 25.8 0.05 1.2 35 0.18 1.61
6to <11 285 1.7 1.6 1279 9.6 32.2 0.05 15 39 0.20 1.09
11to <16 316 0.7 0.7 459 6.5 13.0 0.01 038 9 0.11 0.27
16to <21 296 21 1.8 1565 14.8 342 0.03 21 25 0.17 0.70
21to <50 604 3.8 1.6 2843 20.7 55.3 0.05 1.8 39 0.29 0.78
50+ 366 4.6 1.8 3896 21.9 73.0 0.06 1.8 52 0.30 0.68
REST 0<1 2517 0.1 69 0.0 13 0.01 8 0.00 0.14
1to <2 1704 0.3 228 1.0 8.7 0.03 21 010 0.77
210 <3 1622 0.5 419 21 115 0.04 32 014 0.77
3to <6 3153 0.7 592 3.9 21.3 0.04 31 0.22 1.08
610 <11 4815 1.0 856 4.0 28.3 0.03 29 0.13 1.04
11to <16 7305 1.0 744 4.6 259 0.02 14 010 049
16to <21 6721 11 845 5.0 25.3 0.02 11 0.08 0.38
21to <50 13211 2.3 2895 12.8 46.7 0.03 37 0.16 0.60
50+ 11530 2.6 2101 15.9 459 0.03 29 0.21 0.59
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Ethnicity Age (yr) N Mean fold Std P95 P99
ANP lto<2 36 0.76 3.0 133 4.40 4.40
2to<3 42 0.59 2.2 102 221 4.00
3to<6 91 0.57 15 182 3.40 6.82
6to<11 96 101 2.7 277 4.40 6.80
11 to <16 94 0.69 15 152 3.03 4.70
16 to <21 126 124 2.0 244 4.90 6.71
21to <50 270 1.69 1.6 421 5.52 6.63
50+ 108 1.70 14 374 5.03 5.78
REST lto<2 716 0.25 56 0.92 2.46
2to<3 726 0.27 57 1.10 242
3to<6 1570 0.38 99 1.62 3.60
6to<11 1336 0.38 93 1.40 3.63
11to <16 2089 0.45 91 1.76 4.35
16to <21 3117 0.62 116 2.32 5.20
21to <50 6339 1.04 281 381 6.30
50+ 3510 1.18 253 4.00 6.00

This research extends and is consistent with fogglfnrom previous studies focusing on higher
blood levels in A/N/P populations, by examiningtdig exposures to MeHg from fish
consumption. A/N/P populations are exposed to hithesls of MeHg from fish consumption
than the general US population and other ethnggityips. SHEDS-Dietary modeling allows
identification of Hg intakes by age, gender, ethpj@and type of fish. Correlations of modeled
dietary exposure predictions with NHANES blood baiker levels suggest that fish
consumption is a key exposure pathway for theselptipns.

ORD and OPP scientists have collaborated on apigiicaf SHEDS-Dietary to estimate
permethrin dietary exposure to support OPP’s pyoedicumulative risk assessment. The
objectives of this SHEDS-Dietary application arejt@ntify dietary permethrin exposures in the
U.S. population, analyze the major contributorsl eampare model predictions to observed data
using duplicate diet data from the EPA’s Childrefitdal Exposure to Persistent Pollutants study
(CTEPP).
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CSFIl 1994-1996,1998 consumption data and PDPfdatasidues were used. Model
predictions were evaluated against CTEPP duplicatg data for cis- and trans-permethrin
(matched SHEDS and CTEPP data by age and genélémotstrap approach was applied to
assess uncertainty and relative importance of gieansumption vs. residue data. SHEDS-
Dietary was linked to PBPK models and results caeghagainst NHANES biomonitoring data.

Results are as follows and shown in the TablesB335 and Figures 3-8 to 3-10 below:
exposure: 0.44 to 217 /day; as age increases, exposure increases
by body weight, young children and 50+yrs. havénbgj exposure
3 most important contributors overall: spinachtueg, cabbage
for 98.5 to 99.5 %ile, lettuce more important
results similar for cis- and trans-permethrin
results similar using NHANES vs. CSFII
SHEDS model results and CTEPP measurement resatthead well.

Using the SHEDS-Dietary model, the mean cis-pernretxposure for the U.S. population from
food and drinking water ranged from 0.44 to @w/day; 3.4E-05 to 9.9E-5 mg/kg/day. Thé&'95
percentiles ranged from 0.90 to 24$/day; 8.3E-6 to 6.8E-5 mg/kg/day. As Table 3sda
shows, as age increases, exposure increases; rngaly body weight, young children and
adults over 50 years have the highest exposuresul® were similar for cis- and trans-
permethrin. The three most important contributarsrall were spinach (48% cis-), cabbage
(28% cis-), and lettuce (10% cis-). For the ugpds of the exposed population (98.5%ile to
99.5 %ile), lettuce was more important (43% cise Eigure 3-8).

In comparing with CTEPP measurement results, SHBZ%ary exposure estimates (246 paired
comparisons) for mean, §5and 99' percentiles matched well: the cloud of 100 yellow
variability lines from the model contain the obssihdata in Figure 3-9, and the ratio of modeled
to measured data is close to 1 in Table 3-4 fan bart cis- and trans- permethrin.

Figure 3-10 and Table 3-5 show the sensitivityesiuits to which consumption database is used:
CSFIll or NHANES. Table 3-5 shows that with the NNIAS data, lettuce is the most consumed
(39.7%) and greatest food contributor to dietasyp@rmethrin exposure (47.5% in the %
exposure column); using CSFIl spinach was the massumed (37.9% in the % food column)
and greatest food contributor to dietary cis-pehmetexposure (46%). The list of key RAC is
also different, e.g. apple juice appears in NHANE®Snot CSFIl. Figure 3-10 illustrates the
differences in exposure CDFs using the two diffecemsumption databases.

The model evaluation effort with this case studgves more confidence in SHEDS-Dietary.
More research is needed with PBPK linkage and medaLation.
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ug/day mg/kg/day
age group n mean std p95 p99 mean std p95 p99
0 <1years 297200 6.7E-01 47E+02  7.7E-02 11E+01  7.9E-05 56E02 E-83 1.3E-03
1-2 years 419200 4.4E-01 3.8E+02 5.1E-01 6.0E+00 39E-05 3.7E-02 E-@80 4.7E-04
3-5 years 878200 52E-01 42E+02  7.8E-01 80E+00 3.0E-05 24E-02 E-@4 4.4E-04
6-12 years 417800  7.0E-01 89E+02 1.3E+00 1.3E+01  21E-05 27E-02 E-@61 3.9E-04
13-19 years 244400 1.1E+00 1.6E+03 2.4E+00 1.9E+01  16E-05 2.2E-02 E-B58 3.0E-04
20-49 years 935400 1.8E+00 2.7E+03  4.2E+00 3.8E+01  26E-05 4.1E-02 E-@G8 5.3E-04
50+ years 920200 2.2E+00 2.3E+03  5.0E+00 4.7E+01  32E-05 3.4E02 E-@8 6.6E-04
Contribution of foods to cis-permethrin exposure
All data 98.5 to 99.5 percentiles
tomato
1 (t
celer celery
4%y other 1% other
6% parsley spinach
0,

parsley
2%

31%

spinach
48%

lettuce
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cabbage
10%

lettuce
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perm mean std p5 p25 p50 p75 p95 p99
SHEDS cis-
permethrin 6.9E-02 6.6E-01 4.9E-07 2.6E-05 2.5E-04 9.7E-03 1.7E-01 3E100
CTEPP cis-
permethrin 6.5E-02 3.8E-01 4.2E-04 6.8E-04 1.3E-03 5.8E-03 1.7E-01 6E200
SHEDS trans-
permethrin 6.8E-02 7.2E-01 0.0E+00 1.8E-05 1.8E-04 8.0E-03 1.5E-01 2E%00
CTEPP trans-
permethrin 8.9E-02 3.8E-01 1.0E-03 2.2E-03 4.8E-03 2.3E-02 2.2E-01 OE200

61



Bxposure of ds-permrethrinwith NHANESand CSHI (3 -5 year-dlds)
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Contribution of RAC to total food consumption and cis-permethrin exposure
(3-5 year-olds)

CSFII NHANES
RAC % food % exposure RAC % food % exposure
Spinach 37.9 46.0 Lettuce, head 39.7 47.5
Lettuce, head 29.0 34.5 Spinach 12.9 24.0
Cabbage 14.6 11.1 Cabbage 14.0 11.2
Endive 0.7 2.7 Endive 1.7 6.8
Lettuce, leaf 1.7 1.7 Parsley, leaves 0.3 2.7
Parsley, leaves 0.1 0.8 Lettuce, leaf 2.7 2.6
Spinach-babyfood 0.3 0.7 Pear 2.8 0.9
Brussels sprouts 0.8 0.6 Cantaloupe 4.1 0.7
Cantaloupe 3.2 0.4 Tomato 4.4 0.7
Celery 2.2 0.3 Peach 1.7 0.5
Pear 0.8 0.2 Broccoli 2.2 0.5
Peach 0.5 0.2 Watermelon 5.0 0.4
Tomato 1.5 0.2 Pepper, bell 0.7 0.3
Watermelon 2.2 0.1 Brussels sprouts 0.2 0.3
Broccoli 0.8 0.1 Celery 1.5 0.3
Pepper, bell 0.3 0.1 Apple, juice 4.2 0.3

63



()

Barraj, L.M., Daniels, C.L. (2004) “Drinking Wat€@onsumption Survey”, September 15, 2004,
Sponsored by BayerCropScience, Performing Labarafponent?, pp.40.

Dodd, K.W., Guenther, P.M., Freedman, L.S., Suld¥,, Kipnis, V., Midthune, D., Tooze,
J.A., Krebs-Smith, S.M. (2006) “Statistical Methdds Estimating Usual Intake of Nutrients
and Foods: A Review of the Theory”, Journal of &merican Dietetic Association, pp. 1640-
1660.

FDA (Food and Drug Administration). (1991-2004.)tdldDiet Study—Analytical Results.
Available:
http://www.fda.gov/Food/FoodSafety/FoodContaminAdidteration/TotalDietStudy/u
cm184293.htm [accessed 16 November 2009].

Geyh A.S., Xue J., Ozkaynak H., Spengler J.D., Q200he Harvard Southern California
Chronic Ozone Exposure Study: Assessing Ozone kxpas Grade-School-Age Children in
Two Southern California Communities. Environ Hedpect 108:265-270.

Givens M.L., Lu C., Bartell S.M., Pearson M.A. (Z)0Estimating dietary consumption patterns
among children: A comparison between cross-sedtama longitudinal study designs.
Environmental Research 103: 325-330.

Glen, G., L. Smith, K. Isaacs, T. McCurdy, and dngstaff. (2007). A New Method of
Longitudinal Diary Assembly for Human Exposure Mig, Journal of Exposure Science and
Environmental Epidemiology, accepted article.

Glen, G.; Smith, L.; Zartarian, V.; Stallings, Gaacs, K.; Xue, J. (2007). Planned
Methodologies for Extending SHEDS-Multimedia MoM&rsion 3 (aggregate) to SHEDS-
Multimedia Model Version 4 (cumulative or aggregatkine 12, 2007, p.30.

Isaacs K., Xue J., Stallings C., Zartarian V.G.c8astic Human Exposure and Dose Simulation
(SHEDS) Model for Multimedia, Multipathway ChemisaVersion 1 SHEDS-Dietary Module
User Guide. (2010a) Prepared for the July 20-220ZPA FIFRA SAP, Crystal City, VA.

Isaacs K., Stallings C., Zartarian V.G., Glen Gachastic Human Exposure and Dose
Simulation (SHEDS) Model for Multimedia, Multipatlay Chemicals: Version 4 Residential
Module User Guide. (2010b) Prepared for the JOW22, 2010 EPA FIFRA SAP, Crystal City,
VA.

64



Lantz, J.L., Young, B.M., Jones, R.L. and MihlanJ G2006). “Aldicarb Acute Dietary Risk
Assessment Including Food and Drinking Water”, \rotul, July 14, 2006, Bayer CropScience.

Lu, C., Barr, D.B., Pearson, M., Bartell, S., amd®, R. (2006). “A Longitudinal Approach to
Assessing Urban and Suburban Children’s ExposuRytethroid Pesticides”, Environmental
Health Perspectives, September 2006, Volume 1149Nap. 1419-1423.

McCurdy T, Glen G, Smith L, and Lakkadi Y. (2000he National Exposure Research
Laboratory’s Consolidated Human Activity Databadeurnal of Exposure Analysis and
Environmental EpidemiologyL0:566-578.

Nako, S., Xue, J. and Fort, F. (2007). ISEA ConfeeePanel, “Using CSFIl & NHANES Data
to Assess Within-day Dietary (food) Exposures tetRales.”

Subar, A.F., Dodd, K.W., Guenther, P.M., Kipnis, Midthune, D., McDowell, M., Tooze, J.A.,
Freeedman, L.S., Krebs-Smith, S.M. (2006). “Thed~Boopensity Questionnaire: Concept,
Development, and Validation for Use as a Covaiiage Model to Estimate Usual Food Intake”,
Journal of the American Dietetic Association, pp56-1563.

Tooze, J.A., Midthune, D., Dodd, K.W., Freedmarg.LKrebs-Smith, S.M., Subar, A.F.,
Guenther, P.M., Carroll, R.J., Kipnis, V. (2006} New Statistical Method for Estimating the
Usual Intake of Episodically Consumed Foods wittpkgation to Their Distribution”, Journal
of the American Dietetic Association, pp. 1575-1587

US Department of Agriculture (not dated), AgricuétiMarketing Service, “Documentation:
Supplemental Children’s Survey (1998) to the 1984z9ntinuing Service of Intakes by
Individuals”, http://www.ars.usda.gov/Services/docs.htm

US EPA FIFRA Science Advisory Panel (1998). SAP tileeComments, March 1998. “A Set
of Scientific Issues Being Considered by the Agenagonnection with Policy for Review of
Monte Carlo Analyses for Dietary and Residentigb&sure Scenarios.”
http://www.epa.gov/scipoly/sap

US EPA FIFRA Science Advisory Panel (2000), SAP &eNo. 2000-01B, May 25, 2000.
Session Il — A Set of Scientific Issues Being Cdased by the Environmental Protection Agency
Regarding: Dietary Exposure Evaluation Model (DBEEvid MaxLIP (Maximum Likelihood
Imputation Procedure) Pesticide Residue DecompgsRrocedures and Software.
http://www.epa.gov/scipoly/sap

65



US EPA FIFRA Science Advisory Panel (2004), SAP a@s No. 2004-04, “A Model
Comparison: Dietary and Aggregate Exposure in GernCARES, and Lifeline”,
http://www.epa.gov/scipoly/sap

US EPA FIFRA Science Advisory Panel (2005), SAP &s No. 2005-04, “A Set of Scientific
Issues Being Considered by the Environmental Ptioteé&gency Regarding: Prelminary N-
Methyl Carbamate Cumulative Risk Assesment”, Au@3s26, 2005.

US EPA (1997). Exposure Factors Handbook, Volun@&eheral Factors.
US EPA (1999). Time Sensitive Reversibility of Addrb Induced Cholinesterase Inhibition as a

Factor in Acute Dietary Risk Assessment, FIFRA SRA&jruary 23-24, 1999.
http://www.epa.gov/scipoly/sap

US EPA (1999). “The LifelineTM Project to Model Aggggate Exposures to Pesticides”,
Background papers and Panel comments may be fdund a
http://www.epa.gov/oscpmont/sap/meetings/1999/092ffig.htm

US EPA (2000a). “Dietary Exposure Evaluation MogeBckground papers and Panel
comments may be found at:
http://www.epa.gov/oscpmont/sap/meetings/2000/faetyfinal_sap document feb 1 2000.pdf
US EPA (2000b) “Aggregate and Cumulative Assesssigsing LifelineTM”

U.S. EPA (2000c) “Models - Residential Exposur&Ex Model,”(2000d) “Models -
CALENDEXTM”, Background papers and Panel commendy fme found at:
http://www.epa.gov/oscpmont/sap/meetings/2000/002660g.htm,

US EPA (2000). Food Consumption Intake by Individudbocumentation (1/11/200) and raw
data files are available on the FCID CD-ROM. SeeHP2 (2004) website.

US EPA (2000). Office of Water, ‘Estimated Per Gapater Ingestion in the United States,
Based on Data Collected by the United States Deyeatt of Agriculture’s 1994-96 Continuing
Survey of Intakes by Individuals, EPA 822-R-00-08vailable in the U.S. EPA FCID CD-ROM

US EPA (2000). “Available Information on Assesskxposure from Pesticides, A User’'s
Guide”, Office of Pesticide Programs, See web Ihtkp://www.epa.gov/fedrgstr/EPA-
PEST/2000/July/Day-12/6061.pdf

US EPA (2003). “Physiologically-Based Pharmacokoidtharmacodynamic Modeling:
Preliminary Evaluation and Case Study for the NWkeCarbamate Pesticides”, FIFRA SAP,
November 18, 2003.

66



US EPA (2004). “A Model Comparison: Dietary and Aegpte Exposure in Calendex, CARES,
and Lifeline”, April 29 - 30, 2004.

US EPA (2005). “A Set of Scientific Issues BeingnGimlered by the Environmental Protection
Agency Regarding: Prelminary N-Methyl Carbamate Glative Risk Assesment”, August 23-
26, 2005.

US EPA (2007). “An Update on the Development of $t#EDS-Dietary Model, July 252007,
Papers and Panel comments may be found at
http://www.epa.gov/oscpmont/sap/meetings/2007/08140g.htm

U.S. EPA. Child-Specific Exposure Factors Handb@ohkal Report) (2008). U.S.
Environmental Protection Agency, Washington, DCAE®0/R-06/096F, 2008.

US EPA (2010). Level I Quality Assurance Proje@&rPI(QAPP) for the Stochastic Human
Exposure and Dose Simulation Model for Multimedialtipathway Chemicals (SHEDS-
Multimedia), National Exposure Research Laboratbitynan Exposure & Atmospheric
Sciences Division, Prepared by Alion Science anchfielogy under Work Assignment #3-12
Contract No. EP-D-05-065.

Xue J, Zartarian V, Ozkaynak H, Dang W, Glen®mith L, and Stallings C. (2006). A
probabilistic arsenic exposure assessment forremld/ho contact chromated copper arsenate
(CCA)-treated playsets and decks: Part 2: Sensitarid uncertainty analyseRisk Analysi®6:
533-541.

Xue J. (2007). SHEDS-dietary SAS code.

Xue J, McCurdy T, Spengler J, and Ozkaynak H. 4200ntra- and inter-individual activity
considerations in human exposure modelidgExpos. Anal. Environ. Epidei¥: 221-233.

Xue J., Zartarian V., Wang S-W., Liu S.V., Georgiops P. (2010). Probabilistic Modeling of
Dietary Arsenic Exposure and Dose and Evaluatiagh 2003-2004 NHANES Data. Environ
Health Perspect 118(3): 345-350.

Zartarian V.G. , Glen G., Smith L., Xue J. (200BHEDS-Multimedia Model version 3
Technical Manual, EPA 600/R-08/118, September 2008,
http://www.epa.gov/heasd/products/sheds multimshdéeds mm.html

67



